
El saber de mis hijos
hará mi grandeza”

UNIVERSIDAD DE SONORA

División de Ciencias Exactas y Naturales

Programa de Posgrado en Matemáticas
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Chapter 1

Introduction

Differential equations, whether ordinary or partial, allow modeling phenomena that
evolve with respect to space and time. Typical problems are the propagation of
sound or heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum
mechanics and many others. Finding analytical solutions and the mathematical
analysis of these problems, mainly for those problems that are not linear, has been
a challenge of interest due to a large amount of information they can provide.

There are alternatives to find solutions to differential equations, for example,
computational fluid dynamics is one of the branches of fluid mechanics that uses
numerical methods and algorithms to solve and analyze fluid flow problems that per-
form millions of calculations to simulate the interaction of liquids and gases through
complex surfaces. However, even with simplified equations and high-performance
supercomputers, in many cases, only approximate results can be achieved.

The major challenge in the field of complex systems is a thorough understanding
of the phenomenon of turbulence. Direct numerical simulations have contributed
substantially to our understanding of the phenomena of disorderly flow that in-
evitably arise in the high Reynolds numbers (Re), which is a dimensionless number
used in fluid mechanics to characterize the movement of the fluid indicating whether
follows a laminar or turbulent flow. However, a successful theory of turbulence is
still lacking which should allow predicting features of important phenomena like tur-
bulent mixing, turbulent convection, and turbulent combustion on the basis of the
fundamental dynamical equations.

Spectral methods have recently emerged as a viable alternative for the numeri-
cal solution of partial differential equations. They have proved particularly useful in
fluid dynamics simulation where are now regularly used large spectral hydrodynam-
ics codes to study turbulence, numerical weather prediction, ocean dynamics and
any other problems where high accuracy is desired.

Due to the above, he has motivated the development of this thesis by studying
spectral methods extensively in order to acquire the ability to use this tool and
understand them from the point of view of mathematical analysis. To develop this
study we will focus first on the elementary theory of these methods, encompassing
enough knowledge to allow us to develop, implement and analyze under this ap-
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2 Introduction

proach a wide variety of problems that arise in the partial differential equations that
evolve over time.

To understand the application of these methods, the well-known Burgers’ equa-
tion has been considered, since it is an ideal problem for understanding these meth-
ods because, in addition to being a non-linear problem that presents interesting
characteristics, it can be useful to develop the ability to attack more complex prob-
lems. Furthermore, in order to extend the study of the implementation of spectral
methods, we are going to work with the stochastic version of this equation that will
be very useful for us to know in general terms trying to solve problems of this type,
which are considered of great importance for its wide field of applications and that
it is still an area that is in full development due to the great difficulty in obtaining
solutions.

To carry out this study, we will divide the work into six parts organized as follows

1. In chapter 1, a brief history of Burgers’ equation will be presented in its deter-
ministic version, and we will also present how to obtain the analytical solution
for an initial value problem of this equation, transforming it into another lin-
ear one that can be solved using the Fourier transform. Later, the origin of
the stochastic version will be discussed, in addition to its importance within
mathematics and physics.

2. In chapter 2, we will study the theoretical bases of spectral methods using
the well-known Fourier series as the main tool, which will allow us to study a
theory of approximation of functions under two approaches, using orthogonal
projections and another using interpolation techniques. These two approaches
will be examined independently, studying their implementation and some the-
oretical results that will be useful in chapter 3.

3. In chapter 3, the spectral methods known as Fourier-Galerkin and Fourier-
Collocation will be developed using the tools examined in chapter 2, verifying
their convergence theory. For this, the deterministic Burgers’ equation will be
used, taking advantage of its linearized form to describe the methods, which
will then be applied to the original nonlinear equation to describe the algo-
rithms of its computational implementation that will allow us to perform nu-
merical experiments and to be able to observe some characteristics interesting
for your discussion.

4. In chapter 4, a spectral method used to solve stochastic partial differential
equations that was studied in [1] will be disclosed in as much detail as possible.
We will see that this method, which is built based on the well-known Hermite
polynomials, will allow us to obtain solutions of stochastic problems by solving
a deterministic type problem, and will be illustrated using the stochastic Burg-
ers’ equation developing its implementation and also numerical simulations.

5. In this last chapter, we will discuss the most relevant of each chapter, and we

2



1.1 Brief History of Burgers’ Equation 3

will give some observations of the obtained numerical results to conclude with
some ideas that can be considered to extend this work.

6. At the end of this work, an appendix A was added, which will be useful to
understand in more detail the spectral method developed in chapter 4.

1.1 Brief History of Burgers’ Equation

The simplest fluids (called Newtonian fluids), are described by the well-known
Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes.
These are a set of non-linear (PDEs), which are obtained by applying the principles
of conservation of mechanics and thermodynamics on a volume of fluid to obtain
the so-called integral formulation of the equations. Applying certain considerations,
especially those in which the tangential forces have a linear relationship with the
velocity gradient (Newton’s viscosity law), the differential formulation is obtained
which is generally more useful for solving the problems that arise in the mechanics
of fluids. For further details about the Navier-Stokes equations see [2, 3, 4, 5, 6].

Let v be a vector field, Navier-Stokes equations are given as follows

{
∇ · v = 0,
(ρv)t + (∇ · ρv)v +∇p− µ∇2v − ρG = 0.

(1.1)

It is well known that when ρ is considered the density, p the pressure, v the velocity
and µ the viscosity of a fluid, these equations describe the dynamics of an incom-
pressible fluid (free divergence, and ρt = 0), where G represents the gravitational
effects.

In contrast to equation (1.1), this can be investigated in one spatial dimension.
Simplification in (1.1) of the x component of the velocity vector, which we will call
vx, gives

ρ
∂vx

∂t
+ ρvx

∂vx

∂x
+ ρvy

∂vx

∂y
+ ρvz

∂vx

∂z
+
∂p

∂x
− µ

(
∂2vx

∂x2
+
∂2vx

∂y2
+
∂2vx

∂z2

)
− ρGx = 0.

Considering a 1D problem with no pressure gradient, the above equation reduces to

ρ
∂vx

∂t
+ ρvx

∂vx

∂x
− µ

∂2vx

∂x2
− ρGx = 0. (1.2)

If we use now the traditional variable v rather than vx, take α to be the kinematic
viscosity, i.e, α = µ

ρ and G ≡ 0, then the equation (1.2) becomes just the viscid
Burgers’ equation

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x︸ ︷︷ ︸
Convection

−α
∂2v(x, t)

∂x2︸ ︷︷ ︸
Diffusion

= 0. (1.3)
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1.1 Brief History of Burgers’ Equation Introduction

Some assumptions are made, namely: ρ = constant (density), µ = constant (vis-
cosity), p = constant (pressure).

Burgers’ equation was introduced in 1915 by Harry Bateman [7], an English
mathematician, in his paper along with its corresponding initial condition and
boundary values. Later in 1939, Johannes Martinus Burgers [8, 9], a Dutch physi-
cist, simplified the Navier-Stokes equation (1.1) by just dropping the pressure term,
and in 1948 explained the mathematical modeling of turbulence with the help of the
equation (1.3). The name of this equation is because Burgers became one of the
leading figures in the field of fluid mechanics and, therefore, honors his contributions.

The equation (1.3) is a partial differential equation nonlinear, where the second
term is known as the convective part of the equation and the third as the diffusive
part. This equation appears in several areas of applied mathematics, such as fluid
mechanics, nonlinear acoustics, gas dynamics, traffic flow, and many others. It is
generally considered a toy model, i.e., a tool that is used to understand part of the
internal behavior of the general problem.

The formulation given by the equation (1.3) is called the strong form, i.e., the
partial differential equation requires that it be satisfied for each point x in its domain
and for each t. This formulation can be written as follows

∂v

∂t
+A(v) + F (v) = 0, t > 0, (1.4)

where F and A are given by

A(v) = −αvxx, F (v) =
1

2
(v2)x, x ∈ I.

Multiplying both sides of (1.4) by φ ∈ X, for some arbitrary smooth function φ of
compact support, such that the integral of the PDE over the space I is satisfied, we
get ∫

I

∂v

∂t
φdx+

∫

I
A(v)φdx+

∫

I
F (v)φdx = 0, ∀φ ∈ X, ∀t > 0. (1.5)

The formulation (1.5) is called the weak form of (1.3) and φ are known as the test
functions. If we denote 〈·, ·〉 as the inner product in X, then (1.5) can be written in
compact form as follows

〈
∂v

∂t
+A(v) + F (v), φ

〉
= 0, ∀φ ∈ X, ∀t > 0. (1.6)

Note that the two formulations, (1.5) and (1.4), are equivalent if the solution is
smooth enough, however the weak formulation can adjust less regular solutions than
in the strong form. In fact, the solution to (1.5) is known as the distribution solution
of the original equation (1.3), since it can be shown to satisfy (1.3) in the sense of
distributions. For more details of the above it is recommended to see Schwartz [10],
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1.1 Brief History of Burgers’ Equation Introduction

Lions and Magenes [11], Renardy and Rogers [12].

Proper use of these formulations allows one to recover the strong form from the
weak form, therefore, an appropriate way to design a numerical method is to first
choose one of the formulations satisfied by the exact solution, then restrict the choice
of test functions to a space of finite dimension, to replace u with the discrete solution
uN , and possibly to replace the exact integration with quadrature rules.

1.1.1 Analytical solutions for Burgers’ equation.

When we want to know the precision of an approximation, an alternative is through
numerical experiments that can be compared with some other solution considered
as a good reference. For this type of tests, the better is to have exact solutions
to compare with an approximate one, and fortunately the equation (1.3) can be
solved exactly by Hopf-Cole transformation introduced by Eberhard Hopf [13] and
Julian David Cole [14] independently to convert the Burgers’ equation into a linear
parabolic equation and solve it exactly for any initial condition.

Now consider the problem of initial value for the equation (1.3) as follows
{
ut + uux = αuxx x ∈ R, t > 0, α > 0
u(x, 0) = u0(x) x ∈ R,

(1.7)

Hence, the transformation known as the Cole-Hopf transformation is given by

u = −2α
ϕx

ϕ
(1.8)

Operating (1.8) into each term of (1.7) we find that

ut =
2α(ϕtϕx − ϕϕxt)

ϕ2
, uux =

4α2ϕx(ϕϕxx − ϕ2
x)

ϕ3
,

and

αuxx = −2α2(2ϕ3
x − 3ϕϕxxϕx + ϕ2ϕxxx)

ϕ3
.

Substituting these expressions into (1.7),

2α(−ϕϕxt + ϕx(ϕt − αϕxx) + αϕϕxxx)

ϕ2
= 0,

so we have the following,

−ϕϕxt + ϕx(ϕt − αϕxx) + αϕϕxxx = 0 ⇐⇒ ϕx(ϕt − αϕxx) = ϕ(ϕxt − αϕxxx)

⇐⇒ ϕx(ϕt − αϕxx) = ϕ(ϕt − αϕxx)x.

Therefore, if ϕ solves the equation ϕt − αϕxx = 0, x ∈ R, then u(x, t) given by the
transformation (1.8) solves the Burgers equation.
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1.1 Brief History of Burgers’ Equation Introduction

To completely transform the problem (1.7) we still have to work with the initial
condition function. To do this, note that (1.8) can be written as

u = −2α(logϕ)x, (1.9)

hence, we get

ϕ(x, t) = e−
∫ u(x,t)

2α
dx.

It is clear from (1.9) that multiplying ϕ by a constant does not affect u, so we can
write the last equation as

ϕ(x, t) = e−
∫ x

0
u(y,t)
2α

dy. (1.10)

The initial condition on (1.7) must be transformed by using (1.9) to get

ϕ(x, 0) = ϕ0(x) = e−
∫ x

0
u0(y)
2α

dy.

In summary, we have reduced the problem (1.7) to this one
{
ϕt − αϕxx = 0, x ∈ R, t > 0, α > 0,

ϕ(x, 0) = ϕ0(x) = e−
∫ x

0
u0(y)
2α

dy, x ∈ R.
(1.11)

Parabolic Equation. The general solution of the initial value problem for the
equation (1.11) is well known and can be handled by a variety of methods. An
interesting method related to spectral methods is the following: one can take the
Fourier transform with respect to x for both the equation and the initial condition
ϕ0(x) to obtain a first-order (ODE) as follows

{
ϕ̂t = ξ2αϕ̂, ξ ∈ R, t > 0, α > 0,
ϕ̂(ξ, 0) = ϕ̂0(ξ), ξ ∈ R,

where ϕ̂(ξ, t) =

∫ ∞

−∞
ϕ(x, t)eiξxdx.

Then the solution for this problem is

ϕ̂(ξ, t) = ϕ̂0(ξ)e
ξ2αt.

To recover ϕ(x, t) we have to use the inverse Fourier transformation F−1 , namely,

ϕ(x, t) = F−1(ϕ̂(ξ, t)) = F−1(ϕ̂0e
ξ2αt) = ϕ0(x) ∗ F−1(eξ

2αt),

where ∗ denotes the convolution product.

On the other hand

F−1(eξ
2αt) =

1

2
√
παt

e−
x2

4αt ,

so the initial value problem (1.11) has the analytic solution

ϕ(x, t) =
1

2
√
παt

∫ ∞

−∞
ϕ0(ξ)e

− (x−ξ)2

4αt dξ.
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1.1 Brief History of Burgers’ Equation Introduction

Finally, from (1.8), we obtain the analytic solution for the problem (1.7)

u(x, t) =

∫∞
−∞

x−ξ
t ϕ0(ξ)e

− (x−ξ)2

4αt dξ
∫∞
−∞ ϕ0(ξ)e

− (x−ξ)2

4αt dξ
. (1.12)

However, the previous solution cannot always be calculated explicitly and we
must implement some numerical integration method very efficiently to obtain a
good approximation.

Figure 1.1: Exact solution for (1.7) with initial condition u0(x) = e−0.05x2
using the

equation (1.12) for x ∈ [−60, 60], t ∈ [0, 100], and α = 0.01.

7



1.2 The Stochastic Burgers’ equation Introduction

1.2 The Stochastic Burgers’ equation

In real situations, the mathematical modeling of physical phenomena in a determin-
istic manner does not always produce satisfactory results, since certain hypotheses
are established for their formulation, increasing uncertainty regarding spatial or tem-
poral variables. To predict the behavior of a fluid, it is necessary to calculate the
exact trajectory of each of the particles that compose it (which is an unapproachable
problem).

When a fluid is in a closed container under pressure, each particle gets pushed
against by all the surrounding particles. The container walls and the pressure-
inducing surface (such as a piston) push against them in (Newtonian) reaction.
These macroscopic forces are actually the net result of a very large number of inter-
molecular forces and collisions between the particles in those molecules. One fluid
flow is isotropic if there is no directional preference (e.g. in fully developed turbu-
lence); the kinetic theory of gases is also an example of isotropy if it’s assumed that
the molecules move in random directions and as a consequence, there is an equal
probability of a molecule moving in any direction.

The equation given by (1.1) assumes that the fluid is incompressible and isotropic,
where the viscous stress is given by a linear relationship with the velocity gradient
(Newton’s viscosity law). In addition, the collective behavior of the fluid depends
only on a few macroscopic variables (such as pressure, volume, and temperature)
where the internal structure of the system and the individual behavior of the parti-
cles is not relevant for thermodynamic quantities.

Sometimes, due to the large size of such a system, quantum effects can be ignored
and Newton’s laws may be a good approximation (in some cases, if particles move
very quickly with relativistic mechanics). But it is also possible to model a fluid
as a set of randomly displaced point particles that do not interact with each other,
analyzed by statistical mechanics.

The information necessary to specify a physical system has to do with its en-
tropy. When energy is degraded, Boltzmann said, it is because atoms assume a
more disorderly state. And entropy is a parameter of disorder: that is the profound
conception that emerges from Boltzmann’s new interpretation. Oddly enough, you
can create a measure for the disorder; is the probability of a particular state, defined
here as the number of ways in which it can be assembled from its atoms.

When the interaction between the particles increases, their dispersion affects
their positions and their velocities, which makes the entropy of the distribution
increase over time until reaching a maximum (when the same system is as homoge-
neous and disorganized as possible). Then given a system of particles whose states
X (usually position and velocity), it is possible to define a certain probability distri-
bution that involves the various possible microstates of the system. The Maxwell-
Boltzmann distribution shows how the speeds of the molecules are distributed in a
Gaussian manner.

The fundamental postulate of statistical mechanics, also known as a priori equiprob-
ability postulate, says that given an isolated system in equilibrium, the system has

8



1.2 The Stochastic Burgers’ equation Introduction

the same probability of being in any of the accessible microstates. That is, a system
in equilibrium has no preference for any of the microstates available for that bal-
ance. Then, in general, a system that ignores individual particles exhibits a global
behavior that can be described statistically by defining macroscopic variables from
a probability distribution over the microstates space.

The basic concept of entropy in information theory has a lot to do with the
uncertainty that exists in any random experiment or signal, which is also called the
amount of ”noise” or ”disorder” that a system contains or releases. In this way,
we can talk about the amount of information that a signal carries. Because of this,
the idea of implementing the Brownian movement, which represents the random
movement observed in particles that are in a fluid medium (liquid or gas) as a result
of collisions against the molecules of that fluid, gives us another way to describe
complex fluids.

Over more than half a century a lot of deep mathematics was developed to tackle
the rigorous understanding of turbulence and related questions in hydrodynamics
problems. One of the approaches was to use stochastic analysis based on modifying
the equations (as e.g. Euler, Navier-Stokes, and Burgers’) adding a noise term.
The idea here was to use the smoothing effect of the noise but also to discover
new phenomena of stochastic nature on the other hand. In addition, this was also
motivated by physical considerations, aiming at including perturbative effects, which
cannot be modeled deterministically, due to too many degrees of freedom being
involved, or aiming at taking into account different time scales to components of the
underlying dynamics.

Because Burgers’ equation given by (1.3) has a unique solution for any initial
condition given, it is not a good model for turbulence. It does not display any
chaos; even when a force is added to the right-hand side all solutions converge to a
unique stationary solution as time goes to infinity. However, developed a parallel,
theoretical, and abstract mathematical beyond its dominant presence in applica-
tions. Motivated by the intention to reinstate the Burgers’ equation as a model
for turbulence, the community turned its attention to the randomly forced Burgers’
equation.

Several authors have suggested using the stochastic Burgers’ equation as a simple
model to study turbulence, [15, 16, 17, 18]. In [19] the stochastic burgers equation
has been proposed to study the dynamics of the interfaces by adding a white noise
(or Brownian motion) to the equation (1.3) on the right side, given as follows

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
+

1

2

∂

∂x
(u2(x, t)) +

∂2W̃

∂t∂x
. (1.13)

This equation is a class of quasilinear stochastic PDEs (SPDEs), where W̃ (x, t),
t ≥ 0, x ∈ R is a zero-mean Gaussian process. Moreover, we can write a cylindrical
Wiener process W by setting

W (t) =
∂W̃

∂x
=

∞∑

j=1

βjej ,

9



1.2 The Stochastic Burgers’ equation Introduction

where ej is an orthonormal basis of L2(0, 1) and βj is a sequence of mutually inde-
pendent real Brownian motions in a fixed probability space (Ω,F ,P) adapted to a
filtration {Ft}t≥0. For more details of the above, see the Appendix A.

In the following we shall write (1.13) as follows:

dX(ξ, t) =

[
α∂2ξX(ξ, t) +

1

2
∂ξ
(
X2(ξ, t)

)]
dt+ dW (ξ, t), ξ ∈ [0, 1], t > 0. (1.14)

Equation (1.14) is supplemented with Dirichlet boundary conditions

X(0, t) = X(1, t) = 0, ∀t ≥ 0

and the initial condition

X(ξ, 0) = x(ξ), ξ ∈ [0, 1]

The introduction of randomness in Burgers’ equation produced a number of very
interesting new directions; directions connected with dynamical systems aspects of
the equation, e.g. existence and properties of invariant measures, directions related
to various questions on the well-posedness of the equation in various functional
settings using techniques from infinite-dimensional stochastic analysis. For further
details see [19] for instance.

Also, during the past few decades, the stochastic Burgers’ equation has found
applications in diverse fields ranging from statistical physics, cosmology to fluid
dynamics. The problem of Burgers’ turbulence, that is the study of the solutions
of Burgers’ equation with random initial conditions or random forcing is a central
issue in the study of nonlinear systems out of equilibrium. For further details see
[21, 20] for instance.

A main difficulty with the multidimensional stochastic Burgers equation is that
the solutions take values in a distributional space, but in the case of one-dimension,
the problem of existence of solutions for stochastic Burgers equation is well under-
stood, see [22, 23, 24, 25].
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Chapter 2

The Fundamental Theory For Spectral

Methods

In this chapter, we will present the elements necessary to solve partial differential
equations using spectral methods given as follows





∂u
∂t = Lu, x ∈ I, t > 0,

u(x, 0) = g(x), x ∈ I,

(2.1)

where u is defined in some Hilbert space H, with initial condition g(x) ∈ H and L is
some spatial differential operator, which allows us to represent the previous problem
in another whose solution u will be given by a linear combination of already known
functions.

To do this, suppose that H is a separable Hilbert space with the inner product
〈·, ·〉. Therefore, we can represent the function u in terms of a known orthonormal
base of H, which we will denote as {φk}k∈I , given as follows

u =
∑

k∈I
〈φk, u〉φk.

There is a wide variety of families of base functions, which define different spectral
methods. In this chapter, we will consider the well-known Fourier basis given by

φn(x) = einx. (2.2)

that form an orthogonal set with the standard interior product L2 in the interval
(0, 2π), that is,

∫ 2π

0
φk(x)φl(x)dx = 2πδkl =

{
0 if k 6= l,
2π if k = l.

(2.3)

We will denote as B = span{einx : |n| ≤ ∞} the set containing the Fourier bases.
Therefore, we can define the Fourier series F [u] for u(x) ∈ L2[0, 2π] as follows

F [u] ≡
∑

|n|≤∞
ûne

inx, (2.4)

11



The Fundamental Theory For Spectral . . .

where

ûn =
1

2π

∫ 2π

0
u(x)e−inxdx, k = 0,±1,±2, . . . . (2.5)

which is known as the classical continuous series of trigonometric polynomials, where
ûn are the Fourier coefficients.

It is important noted that the integrals in (2.5) exist if u is Riemann-integrable,
i.e., if u is bounded and piecewise continuous in (0, 2π). More generally, the Fourier
coefficients are defined for any function that is integrable in the Lebesgue sense.
Also the relation (2.5) associates with u a sequence of complex numbers called the
Fourier transform of u. It is possible as well to introduce a Fourier cosine transform
and a Fourier sine transform of u, respectively, through the formulas

an =
1

2π

∫ 2π

0
u(x) cos(nx)dx, n = 0,±1,±2, . . . , (2.6)

and

bn =
1

2π

∫ 2π

0
u(x) sin(nx)dx, n = 0,±1,±2, . . . . (2.7)

The three Fourier transforms of u are related by the formula ûn = an − ibn for
n = 0,±1,±2, . . . . Moreover, if u is a real valued function, an and bn are real num-
bers, and û−n = ûn.

Based on the above, we will present two tools to build the methods that will
be used in Chapter 3, and that will be developed independently in the following
two sections. In the first section, we will see that with the continuous Fourier
expansion we can define a projection operator on a space of finite dimension that
will allow us to approximate a function and its derivatives. In the second and last
section, due to the complexity of the calculation of the previous integrals, we will
see that it is possible to use quadrature rules to approximate them, and thus define
an interpolation operator that will give us a discrete representation for a function
and its derivatives.

For these two operators, at the end of each section we will discuss the factors that
determine the behavior of the series when used to approximate smooth functions,
showing how fast they approach, when, and in what sense they are convergent.
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2.1 Projection Operator: Continuous . . . The Fundamental Theory For Spectral . . .

2.1 Projection Operator: Continuous Fourier Expan-

sion

We define the projection operator denoted as PN as the truncated Fourier series,
i.e.,

PNu(x) ≡
∑

|n|≤N
2

ûne
inx. (2.8)

We will denote to B̂N as the finite subset of B = span{einx : |n| ≤ ∞} on which it
is projected the function, represented as follows

B̂N = span

{
einx : |n| ≤ N

2

}
, dim(B̂N ) = N + 1.

Then by the orthogonality relation (2.3), it can be seen that for u(x) ∈ L2[0, 2π]

〈PNu, v〉 = 〈u, v〉, ∀v ∈ SN .

This shows that PNu is the orthogonal projection of u upon the space of the trigono-
metric polynomials of degree N .

Equivalently, PNu is the closest element to u in B̂N with respect to the inner
product

〈u, v〉 =
∫ 2π

0
u(x)v(x)dx,

and this also defines the norm

‖u‖2 =
∫ 2π

0
|u(x)|2dx. (2.9)

A full characterization of the functions for which the Fourier series is convergent
is the framework of Lebesgue integration for convergence in mean. This convergence
can be defined in L2(0, 2π) (square-integrable functions), also is a complex Hilbert
space with inner product defined by (2.9). Then for u ∈ L2(0, 2π) the Fourier series
F (u) given by (2.4) is said to be convergent in mean (or L2-convergent) to u if

∫ 2π

0
|u(x)− PNu(x)|2dx→ 0, as N → ∞, (2.10)

Then the Functions in L2(0, 2π) can be characterized in terms of their Fourier
coefficients, according to the Riesz theorem, in the following sense. If u ∈ L2(0, 2π),
then its Fourier series converges to u in the sense of (2.10), and by Parseval’s identity
show us that

‖u‖2 = 2π

∞∑

−∞
|ûn|2. (2.11)

13
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Conversely, if for any complex sequence {ûn}, n = 0,±1, . . . , and
∑∞

n=−∞ |ûn|2 <∞,
there exists a unique function u ∈ L2(0, 2π) such that its Fourier coefficients are
precisely the ûn

′s for any n. Thus, for any function u ∈ L2(0, 2π) can be written as

u =

∞∑

n=−∞
ûnφn. (2.12)

The Riesz theorem states that the finite Fourier transform is an isomorphism be-
tween L2(0, 2π) and the space l2 of complex sequences {ûn}, n = 0,±1,±2, . . . , such
that

∑∞
n=−∞ |ûn|2 <∞. The above can be summed up in the following theorem.

Theorem 2.1. If the sum of squares of the Fourier coefficients is bounded
∑

|n|≤∞
|ûn|2 <∞

then the truncated series converges in the L2 norm

‖u− PNu‖L2[0,2π] → 0 as N → ∞.

If, moreover, the sum of the absolute values of the Fourier coefficients is bounded
∑

|n|≤∞
|ûn| <∞

then the truncated series converges uniformly

‖u− PNu‖L∞[0,2π] → 0 as N → ∞.

Note that if the truncated sum converges implies that the error is dominated by
the tail of the series, i.e.,

‖u− PNu‖2L2[0,2π] = 2π
∑

|n|>N
2

|ûn|2,

and

‖u− PNu‖L∞[0,2π] ≤
∑

|n|>N
2

|ûn|.

Thus, the error committed by replacing u(x) with its Nth-order Fourier series de-
pends solely on how fast the expansion coefficients of u(x) decay.

To appreciate this, suppose that u(x) ∈ L2
p[0, 2π] and that its derivative u′(x) ∈

L2
p[0, 2π], where the subscript p indicate that the function is periodic. then for n 6= 0

we have to

2πûN =

∫ 2π

0
u(x)e−inxdx

= − 1

in
(u(2π)− u(0))− 1

in

∫ 2π

0
u′(x)einxdx,

14
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therefore

|ûN | ∝ 1

n
.

In general, if for u(x) and its derivatives (m− 1), and its periodic extensions are
all continuous, and also if its derivative mth is measurable at [0, 2π], also known in
the literature as the regularity of the function, in this particular case in L2

p, we have
to ∀n 6= 0, repeating the previous procedure successively, the behavior of Fourier
coefficients ûn of u(x) is similar, i.e.,

|ûn| ∝
(
1

n

)m

.

This is known as spectral convergence, which means that the smoother the func-
tion, the series converges faster.

This result is important since it will allow us to investigate the convergence rate
of the methods, which we will define in detail later. Therefore, we will focus on
periodic functions expanded in Fourier series since its rapid decay of the coefficients
implies that the Fourier series truncated after just a few more terms represents an
exceedingly good approximation of the function. However, in practice, this decay is
not exhibited until there are enough coefficients to represent all the essential struc-
tures of the function but in general, functions can be described both through their
values in physical space and through their coefficients in transform space. The fol-
lowing examples illustrate the previous results.

Example 2.1. Consider the function u(x) ∈ C∞[0, 2π] given by

u(x) =
1

5− 4 cos(x)
(2.13)

with its expansion coefficients

ûn =
2−|n|

3
.

In Figure 2.1 we can clearly observe the convergence of the Fourier series and
that in addition, the convergence of the approximation is almost uniform. This is
due to the periodicity of the function and its derivatives.

15



2.1 Projection Operator: Continuous . . . The Fundamental Theory For Spectral . . .

Figure 2.1: (a) Continuous Fourier series approximation of the equation (2.13). (b)
The Pointwise error of approximation.

Example 2.2. The expansion coefficients of the function

u(x) =
π

2
sin(

x

2
) (2.14)

are given by

ûn =
1

(1− 4n2)
.

Note that is infinitely differentiable in [0, 2π], but u′(0) 6= u′(2π). In Figure 2.2
we can see that the convergence is much slower than in the Example 2.13, as expected

Figure 2.2: (a) Continuous Fourier series approximation of the equation (2.14). (b)
The Pointwise error of approximation for increasing resolution.
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2.1.1 Differentiation of the Continuous Expansion

To find solutions of partial differential equations using the spectral methods, in ad-
dition to approximating a function u(x) by the finite Fourier series PNu, we also
need to obtain its derivatives. Due to the linearity of the derivative and that these
functions are exponential, we can easily obtain the derivatives of PNu by simply
differentiating the basis functions term by term. Therefore, if we have the following
series truncated

PNu(x) =
∑

|n|≤N
2

ûne
inx,

from this, we can get

dq

dxq
PNu(x) =

∑

|n|≤N
2

ûn
dq

dxq
einx =

∑

|n|≤N
2

(in)qûne
inx.

Therefore the projection and differentiation operators commute, i.e.,

PN
dq

dxq
u =

dq

dxq
PNu.

This property implies that for any differentiation operator L with constant coeffi-
cients,

PNL(I − PN )u

vanishes, which known as the truncation error. Thus, the Fourier approximation to
the equation ut = Lu is exactly the projection of the analytic solution.

2.1.2 Approximation theory for Continuous Expansion.

The behavior of the functions and their derivatives that we have shown is relevant
when the solutions of the differential equations are approximated using spectral
methods since it allows us to investigate how fast and precise they can be. In this
subsection, we will present these properties based in [28] as detailed as possible some
useful results for our main objective regarding the analysis of the projection operator
already defined above.

When using the Fourier approximation to discretize the spatial part of the equa-
tion

ut = Lu,

it is important that our approximation, both to u and to Lu, be accurate,i.e., we
must consider not only the difference between u and PNu if not also the distance

17



2.1 Projection Operator: Continuous . . . The Fundamental Theory For Spectral . . .

between Lu and LPNu, measured in an appropriate norm. This is because the
actual rate of convergence is determined by the truncation error

PNL(I − PN )u.

Thus, the error is determined not only by the behavior of the Fourier approximations
of the function but also of its derivatives, as we have seen previously. Therefore, the
Sobolev q-norm denoted by Hq

p [0, 2π], It is appropriate to estimate the truncation
error since it measures the smoothness of the derivatives and the function. This
norm is defined as follows

‖u‖2Hq
p [0,2π]

=

q∑

m=0

∫ 2π

0
|um(x)|2 dx. (2.15)

The subscript p indicates the fact that all functions are periodic. By substituting
the Fourier expansion for each derivative in (2.15), the Sobolev norm can be written
as

‖u‖2Hq
p [0,2π]

= 2π

q∑

m=0

∑

|n|≤∞
|n|2m|ûn|2 = 2π

∑

|n|≤∞

(
q∑

m=0

|n|2m
)
|ûn|2,

where the interchange of the summation is allowed provided u(x) has sufficient
smoothness.

Before starting the analysis, without loss of generality, we first consider the
continuous Fourier series given by

P2Nu(x) =
∑

|n|≤N

ûne
inx.

The first important result is the estimate in L2 for the distance between u and its
trigonometric approximation P2Nu, which shows everything we’ve seen previously.

Theorem 2.2. For any u(x) ∈ Hr
p [0, 2π], there exists a positive constant C, inde-

pendent of N , such that

‖u− P2Nu‖L2[0,2π] ≤ CN−q‖u(q)‖L2[0,2π],

provided 0 ≤ q ≤ r.

Proof. By Parsevals identity given by (2.11) we get

‖u− P2Nu‖2L2[0,2π] = 2π
∑

|n|>N

|ûn|2.
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We rewrite this summation as follows

∑

|n|>N

|ûn|2 =
∑

|n|>N

n2q

n2q
|ûn|2

≤ N−2q
∑

|n|>N

n2q|ûn|2

≤ N−2q
∑

|n|≥0

n2q|ûn|2

=
1

2π
N−2q‖u(q)‖2L2[0,2π].

Putting all the above together and taking out the square root, we get our result.

Note that the smoother the function, the larger the value of q and therefore, the
better the approximation, as seen before. Now let’s notice the following. Suppose
that u(x) is analytical, so we have to

u(q) =
∑

|n|≤∞
(in)qûne

inx.

Since u(q) ∈W q
p , and by (2.11)

‖u(q)‖L2[0,2π] =
∑

|n|≤∞
|n|2q|ûn|2 ≤ Cq!

∑

|n|≤∞
|ûn|2 ≤ Cq!‖u‖L2[0,2π],

and so by the previous theorem

‖u− P2Nu‖L2[0,2π] ≤ N−q‖u(q)‖L2[0,2π] ≤ C
q!

N q
‖u‖L2[0,2π].

Using Stirlings formula, q! ∼ qqe−q, and assuming that q ∝ N , we obtain

‖u− P2Nu‖L2[0,2π] ≤∼ C
( q
N

)q
e−q‖u‖L2[0,2π] ∼ Ke−cN‖u‖L2[0,2π].

Thus, for an analytic function, its spectral convergence is exponential convergence.

We must not forget that the theory we have previously presented is with the
assumption that the functions and their derivatives are all periodic. But it is possible
to do a similar analysis considering some other class of functions, such as functions
that vanish at the borders. However, these kinds of functions belong to spaces very
similar to those we have studied, and it is possible to use the same results.
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2.2 Interpolation Operator: Discrete Fourier Expansion

The continuous Fourier series method requires the evaluation of the coefficients

ûn =
1

2π

∫ 2π

0
u(x)e−inxdx. (2.16)

In general, these integrals cannot be computed analytically, and one resorts to the
approximation of the Fourier integrals by using quadrature formulas. This procedure
defines a discrete transform between the set of values of u at the quadrature points
and the set of approximate, or discrete, coefficients. The finite series defined by the
discrete transform is actually the interpolate of u at the quadrature nodes. If the
properties of accuracy (in particular the spectral accuracy) are retained by replacing
the finite transform with the discrete transform, then the interpolant series can be
used instead of the truncated series to approximate functions. Also, quadrature
formulas differ based on the exact position of the grid points, and the choice of an
even or odd number of grid points results in slightly different schemes.

2.2.1 The Even Expansion

Define an equidistant grid, consisting of an even number N of gridpoints xj ∈ [0, 2π),
defined by

xj =
2πj

N
, j ∈ [0, · · · , N − 1].

The trapezoidal rule yields the discrete Fourier coefficients ũn, which approximate
the continuous Fourier coefficients ûn given as follows

ũn =
1

N

N−1∑

j=0

u(xj)e
−inxj . (2.17)

The difference between the continuous and the discrete approximation is very clear
since here we only need precision in the points xj . This may somehow be an ad-
vantage in the numerical calculation because in some cases it is possible to obtain
the same order of precision, as shown in the following theorem when trigonometric
polynomials are involved, the trapezoidal quadrature rule is a very natural approx-
imation.

Theorem 2.3. For the points xj defined as above, the quadrature formula

1

2π

∫ 2π

0
f(x)dx =

1

N

N−1∑

j=0

f(xj),

is exact for any trigonometric polynomial f(x) = einx , |n| < N .
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Proof. Given a function f(x) = einx, It is easy to observe that

1

2π

∫ 2π

0
f(x)dx =

{
1 if n = 0,
0 otherwise.

On the other hand,

1

N

N−1∑

j=0

f(xj) =
1

N

N−1∑

j=0

ein(
2πj
N

)

=
1

N

N−1∑

j=0

qj

where q = ei
2πn
N . If n is an integer multiple of N , i.e., n = mN , then, we have to

1

N

N−1∑

j=0

eiNm( 2πj
N

) =
1

N

N−1∑

j=0

ei(2πjm) = 1

Otherwise,

1

N

N−1∑

j=0

qj =
qN − 1

q − 1
= 0

Thus, the quadrature formula is exact for any function of the form f(x) = einx,
|n| < N .

Moreover, we can see that the quadrature formula is exact for f(x) ∈ B̂2N−2

where B̂N is defined as before. Then using the trapezoid rule, the discrete Fourier
coefficients become

ũn =
1

Nc̃n

N−1∑

j=0

u(xj)e
−inxj , (2.18)

where we introduce the coefficients

c̃n =





2 if |n| = N/2,

1 if |n| < N/2.
(2.19)

These relations define a new projection of u

INu(x) =
∑

|n|≤N
2

ũne
inx (2.20)

This is the complex discrete Fourier transform, based on an even number of quadra-
ture points. From the above, we can see that

ũ−N/2 = ũN/2,

21



2.2 Interpolation Operator: Discrete . . . The Fundamental Theory For Spectral . . .

so we have exactly N independent Fourier coefficients, corresponding to the N
quadrature points. As a consequence, IN sin(N2 x) = 0, so that the function sin(N2 x)

is not represented in the above expansion. Therefore, the space B̂N does not include
sin(N2 x), and the correct space must be as follows

B̃N = span

{(
cos(nx), 0 ≤ n ≤ N

2

)
∪
(
sin(nx), 1 ≤ n ≤ N

2
− 1

)}
,

which has dimension dim(B̃N ) = N .

In the same way, as in the previous subsection using the discrete expansion for
Examples 2.13 and 2.14, we can observe the same behavior as with continuous
expansion, but now we have that the error at each point xj of the grid is zero.

Example 2.3. Consider the C∞
p [0, 2π] function

u(x) =
1

5− 4 cos(x)
. (2.21)

Its expansion coefficients are

ûn =
2−|n|

3
.

Figure 2.3: (a) Discrete Fourier series approximation of the equation (2.21). (b)
Pointwise error of approximation for increasing resolution.

Example 2.4. The expansion coefficients of the function

u(x) =
π

2
sin(

x

2
), (2.22)
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are given by

ûn =
1

(1− 4n2)
.

Figure 2.4: (a) Discrete Fourier series approximation of the equation (2.22). (b)
Pointwise error of approximation for increasing resolution.

Therefore, we can see that the discrete expansion is, in fact, an interpolation
operator as mentioned. This can be shown in the following theorem.

Theorem 2.4. Let the discrete Fourier transform be defined by Equations (2.18)-
(2.20). For any periodic function, C0

p [0, 2π], we have

INu(xj) = u(xj), ∀xj =
2πj

N
, j = 0, . . . , N − 1.

Proof. Substituting Equation (2.18) into Equation (2.20) we obtain

INu(x) =
∑

|n|≤N
2


 1

Nc̃n

N−1∑

j=0

u(xj)e
−inxj


 einx.

Exchanging the order of the sum gives

INu(x) =
N−1∑

j=0

u(xj)gj(x), (2.23)
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where

gj(x) =
∑

|n|≤N
2

1

Nc̃n
ein(x−xj)

=
1

N
sin

[
N
x− xj

2

]
cot

[
x− xj

2

]

by summing as a geometric series. It is easily verified that gj(xi) = δij

We still need to show that gj(x) ∈ B̃N . Clearly, gj(x) ∈ B̂N as gj(x) is a poly-
nomial of degree ≤ N/2. However, since

1

2
e−iN

2
xj =

1

2
ei

N
2
xj =

(−1)j

2
,

and, by convention ũ−N/2 = ũN/2, we do not get any contribution from the term

sin(N2 x), hence gj(x) ∈ B̃N .

2.2.2 The Odd Expansion

Similarly, we define a grid with an odd number of grid points as follows

xj =
2π

N + 1
j, j ∈ [0, . . . , N ],

and using the trapezoidal rule we get

ũn =
1

N + 1

N∑

j=0

u(xj)e
−inxj , (2.24)

to obtain the interpolation operator

JNu(x) =
∑

|n|≤N
2

ũne
inx. (2.25)

Again as before, the quadrature formula is highly accurate.

Theorem 2.5. For the points xj defined as above, the quadrature formula

1

2π

∫ 2π

0
f(x)dx =

1

N + 1

N∑

j=0

f(xj),

is exact for any f(x) = einx , |n| < N , i.e., for all f(x) ∈ B̃2N .
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Proof. Given a function f(x) = einx, It is easy to observe that

1

2π

∫ 2π

0
f(x)dx =

{
1 if n = 0,
0 otherwise.

On the other hand,

1

N + 1

N∑

j=0

f(xj) =
1

N + 1

N∑

j=0

ein(
2πj
N+1

)

=
1

N + 1

N∑

j=0

qj

where q = ei
2πn
N+1 . If n is an integer multiple of N + 1 , i.e., n = (N + 1)m, then we

have to

1

N + 1

N∑

j=0

ei(N+1)m( 2πj
N+1

) =
1

N + 1

N∑

j=0

ei(2πjm) = 1

Otherwise,

1

N + 1

N∑

j=0

qj =
qN+1 − 1

q − 1
= 0

Thus, the quadrature formula is exact for any function of the form f(x) = einx,
|n| < N .

The scheme may also be expressed through the use of a Lagrange interpolation
polynomial,

JNu(x) =

N∑

j=0

u(xj)hj(x) (2.26)

where

hj(x) =
1

N + 1

∑

|k|≤N
2

eik(x−xj) =
1

N + 1

sin(N+1
2 (x− xj))

sin(
x−xj

2 )
(2.27)

One easily shows that hj(xl) = δjl and that hj(x) ∈ B̂N .
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2.2.3 Differentiation of the discrete expansions

Similarly, as in continuous expansion, we require compute derivatives of the discrete
approximation. In the following subsections, we assume that our function u and all
its derivatives are continuous and periodic on [0, 2π].

We consider the case of an even number of grid points. Using expansion coeffi-
cients given the values of the function u(x) at the points xj , differentiating the
basis functions in the interpolant yields

d

dx
INu(x) =

∑

|n|≤N/2

inũne
inx, ũn =

1

Nc̃n

N−1∑

j=0

u(xj)e
−inxj , (2.28)

where c̃n is given by (2.19). Higher order derivatives can be obtained simply by
further differentiating the basis functions.

Similarly, for the case of an odd number of grid points

d

dx
JNu(x) =

∑

|n|≤N/2

inũne
inx, ũn =

1

N + 1

N∑

j=0

u(xj)e
−inxj , (2.29)

The procedure for differentiating using expansion coefficients can be described as
follows: first, we transform the point values u(xj) in physical space into the coeffi-
cients ũn in mode space. We then differentiate in mode space by multiplying ũn by
in, and return to physical space.

There are other ways to obtain these derivatives, which may have greater advan-
tage and be more efficient to calculate. In the literature, it can commonly find the
use of differentiation matrices, for which there is a great variety. We will present
some matrices that have been studied in [28], [26], and we will observe the difference
between the cases of an even and odd number of grid points.

Differentiation Matrix. Recall that to the case of an even number of grid points,
the interpolation operator can be written as

INu(x) =
N−1∑

j=0

u(xj)gj(x),

where gj are the Lagrange interpolation polynomials given by

gj(x) =
1

N
sin

[
N
x− xj

2

]
cot

[
x− xj

2

]
.
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Then, by differentiating the interpolation directly, it can get an approximation to
the derivative of u(x) at the points xj as follows

d

dx
IN (x)

∣∣∣
xl

=
N−1∑

j=0

u(xj)
d

dx
gj(x)

∣∣∣
xl

=
N−1∑

j=0

Dlju(xj),

where Dlj are the differentiation matrix entries given by

Dij =
d

dx
gj(x)

∣∣∣
xi

=

{
(−1)i+j

2 cot
[
xi−xj

2

]
i 6= j,

0 i = j,
(2.30)

it is also well known that D is circulant and skew-symmetric matrix. In the same
way, the entries of the second order differentiation matrix D(2) gives us

D
(2)
ij =

d2

dx2
gj(x)

∣∣∣
xi

=




− (−1)i+j

2

[
sin
[
xi−xj

2

]]−1
i 6= j,

−N2+2
12 i = j.

(2.31)

The approximation of higher derivatives follows exactly the same route, and
similarly to obtain the entries of the differentiation matrix D̃ for the interpolation
based on an odd number of points given by

D̃ij =




− (−1)i+j

2

[
sin
[
xi−xj

2

]]−2
i 6= j,

0 i = j.
(2.32)

It is also known that D̃ is a circulant, skew-symmetric matrix. The advantage
of this method is that the differentiation matrix takes us from physical space to
physical space, and the act of differentiation is hidden in the matrix itself.

It is interesting to observe that the differentiation operator for the interpolation
based on an odd number of grid points, takes elements of B̃N out of B̃N and then

IN
d2

dx2
IN 6=

(
IN

d

dx

)2

IN .

But for the interpolation based on an odd number of grid points the differentia-
tion operator remain in B̂N when takes elements of B̂N , and thus,

JN
d2

dx2
JN =

(
JN

d

dx

)2

JN

Moreover, for all values of q we have

D̃(q) = JN
dq

dxq
JN = D̃q

allowing us to calculate approximate high derivatives by just multiplying the D
matrix as many times as necessary.

For the above, and for some interesting properties that we will see later about
interpolation operator based on an odd number of grid points, it has been decided
to use it for the study of this work.
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2.2.4 Approximation theory for Discrete Expansion.

Based on the theory developed in [28] with respect to the interpolation operator
analysis for the case of an even number of grid points, we will adapt the results for
the case of an odd number of grid points in the most detailed way possible.

First of all, we can define a discrete version of the inner product L2 as follows

〈fN , gN 〉N =
1

N + 1

N∑

j=0

fN (xj)ḡN (xj),

and the associated norm

‖fN‖2N = 〈fN , fN 〉N

where fN , gN ∈ B̂N and there are an odd number of grid points xj , j = 0, . . . , N .
Note also that the interpolant JNu of a continuous function u and for all v ∈ B̂N ,
satisfies trivially the identity

〈JNu, v〉N = 〈u, v〉N .

Moreover, as a consequence of the exactness of the quadrature rule for trigono-
metric functions, as have seen in Theorem 2.3, we have

〈fN , gN 〉N =
1

2π

∫ 2π

0
fN ḡNdx, ‖fN‖L2[0,2π] = ‖fN‖N (2.33)

Hence, in B̂N , the continuous and discrete inner product are the same.

The situation is different when we discuss an even number of grid points. If
fN , gN ∈ B̃N and we have an even number of grid points xj , the discrete inner
product

〈fN , gN 〉N =
1

N

N−1∑

j=0

fN (xj)ḡN (xj), ‖fN‖2N = 〈fN , fN 〉N

is not equal to the continuous inner product. However, using the fact that fN ∈
L2[0, 2π] it can be shown that there exists a K > 0 such that

K−1‖fN‖2L2[0,2π] ≤ ‖fN‖2N ≤ K‖fN‖2L2[0,2π]. (2.34)

Something very interesting and useful in the use of discrete expansion to ap-
proximate functions and their derivatives is that the behavior is very similar to that
shown in the previous subsection for continuous expansion. We will see that the
approximation theory for the discrete expansion yields essentially the same results
as for the continuous expansion. The proofs are based on the fact that the Fourier
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coefficients of the discrete approximation are sufficiently close to those of the con-
tinuous approximation.

Recall that the interpolation operator associated with an odd number of grid
points is given by

J2Nu =
∑

|n|≤N

ũne
inx,

with expansion coefficients

ũn =
1

2N + 1

2N∑

j=0

u(xj)e
−inxj , xj =

2πj

2N + 1
.

First we observe the following, the interpolation operator associated with an odd
number of grid points are based on the points xj , for which the (n+Mm)th mode,
where M = 2N + 1, is indistinguishable from the nth mode, i.e.,

ei(n+Mm)xj = einxjei2πmj = einxj

This phenomenon is known as aliasing.

Moreover, due to the orthogonality relation as before seen we have to

1

M

M−1∑

j=0

e−inxj =

{
1 if n =Mm, m = 0,±1,±2, . . . ,
0 otherwise.

The relationship between the discrete expansion coefficients ũn , and the contin-
uous expansion coefficients ûn, is given in the following lemma.

Lemma 2.1. Consider u(x) ∈W q
p [0, 2π], where q > 1/2. For |n| ≤ N we have

c̃nũn = ûn +
∑

|m|≤∞
m 6=0

ûn+Mm (2.35)

Proof. Substituting the continuous Fourier expansion into the discrete expansion
yields

c̃nũn =
1

M

M−1∑

j=0

∑

|l|≤∞
ûle

i(l−n)xj

To interchange the two summations we must ensure uniform convergence, i.e.,
∑

|l|≤∞ |ûl| <
∞. This is satisfied, since if q > 1/2 then, as before there is m ∈ N such that for
l ≥ m we have to

(1 + |l|)2q ≤ 2q(1 + l2q)
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taking m as follows

1

m
≤ (2q)

1
2q − 1

Therefore

∑

|l|≤∞
|ûl| =

∑

|l|≤∞
(1 + |l|)q |ûl|

(1 + |l|)q

≤


2q

∑

|l|≤∞
(1 + l2q)|ûl|2




1/2
∑

|l|≤∞
(1 + |l|)−2q




1/2

,

where the last expression follows from the Cauchy-Schwarz inequality. As u(x) ∈
W q

p [0, 2π] the first part is clearly bounded. Furthermore, the second term is a p-
series and then converges provided q > 1/2, ensuring boundedness.

Interchanging the order of summation and using orthogonality of the exponential
function at the grid yields the desired result

c̃nũn =
1

M

M−1∑

j=0

∑

|l|≤∞
ûle

i(l−n)xj =
∑

|l|≤∞

1

M

M−1∑

j=0

ûle
i(l−n)xj

=
∑

|m|≤∞

1

M

M−1∑

j=0

ûn+Mme
i(n+Mm)xj

=
1

M

M−1∑

j=0

ûne
inxj +

∑

|m|≤∞
m 6=0

1

M

M−1∑

j=0

ûn+Mme
i(n+Mm)xj

= ûn +
∑

|m|≤∞
m 6=0

ûn+Mm

The conclusions of the previous discussion are equally valid in the number of odd
or even points. An equivalent formulation of (2.35) is

JNu = PNu+ANu

It is orthogonal to the truncation error, u− PNu, so that

‖u− JNu‖2 = ‖u− PNu‖2 + ‖ANu‖2

Hence, the error due to the interpolation is actually always larger than the error due
to the truncation of the Fourier series.
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Rather than deriving the estimates of the approximation error directly, we shall
use the results obtained in the previous section and then estimate the difference
between the two different expansions, which we recognize as the aliasing error given
by

‖AN‖L2[0,2π] =

∥∥∥∥∥∥∥∥

∑

|n|<N



∑

|m|≤∞
m 6=0

ûn+Mm




∥∥∥∥∥∥∥∥
L2[0,2π]

As before, we first consider the behavior of the approximation in the L2-norm.
We will first show that the bound on the aliasing error, AN , in equation above
is of the same order as the truncation error. The error caused by truncating the
continuous expansion is essentially the same as the error produced by using the
discrete coefficients rather than the continuous coefficients.

Lemma 2.2. For any u(x) ∈W r
p [0, 2π], where r > 1/2, the aliasing error

‖AN‖L2[0,2π] =


 ∑

|n|≤∞
|c̃nũn − ûn|2




1/2

≤ CN−r‖ur‖L2[0,2π]

Proof. From Lemma 2.1 we have

|c̃nũn − ûn|2 =

∣∣∣∣∣∣∣∣

∑

|m|≤∞
m 6=0

ûn+Mm

∣∣∣∣∣∣∣∣

2

To estimate this, we first note that

∣∣∣∣∣∣∣∣

∑

|m|≤∞
m 6=0

ûn+Mm

∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣

∑

|m|≤∞
m 6=0

|n+Mm|rûn+Mm
1

|n+Mm|r

∣∣∣∣∣∣∣∣

2

≤



∑

|m|≤∞
m 6=0

|n+Mm|2r|ûn+Mm|2






∑

|m|≤∞
m 6=0

1

|n+Mm|2r




using the Cauchy-Schwartz inequality. Since M = 2N + 1 and |n| ≤ N , we have
to N(2m − 1) = 2Nm − N ≤ |n +Mm|. Hence, bounding of the second term is
ensured by

∑

|m|≤∞
m 6=0

1

|n+Mm|2r ≤ 2

N2r

∞∑

m=1

1

(2m− 1)2r
= C1N

−2r,
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provided r > 1/2. Here, the constant C1 is a consequence of the fact that the power
series converges, and it is independent of N .
Summing over n, we have

∑

|n|≤N

∣∣∣∣∣∣∣∣

∑

|m|≤∞
m 6=0

ûn+Mm

∣∣∣∣∣∣∣∣

2

≤
∑

|n|≤N

C1N
−2r

∑

|m|≤∞
m 6=0

|n+Mm|2r|ûn+Mm|2

≤ C2N
−2r‖u(r)‖2L2[0,2π]

We are now in a position to state the error estimate for the discrete approxima-
tion.

Theorem 2.6. For any u(x) ∈ W r
p [0, 2π] with r > 1/2, there exists a positive

constant C, independent of N , such that

‖u− J2Nu‖L2[0,2π] ≤ CN−r‖u(r)‖L2[0,2π]

Proof. Lets write the difference between the function and its discrete approximation

‖u− J2Nu‖L2[0,2π] = ‖(P2N − J2N )u+ u− P2Nu‖L2[0,2π]

≤ ‖(P2N − J2N )u‖L2[0,2π] + ‖u− P2Nu‖L2[0,2π]

Thus, the error has two components. The first one, which is the difference between
the continuous and discrete expansion coefficients, is the aliasing error, which is
bounded in Lemma 2.2. The second, which is the tail of the series, is the truncation
error, which is bounded by the result of Theorem 2.2. The desired result follows
from these error bounds.

Theorem above confirms that the approximation errors of the continuous expan-
sion and the discrete expansion are of the same order, as long as u(x) has at least
half a derivative. Furthermore, the rate of convergence depends, in both cases, only
on the smoothness of the function being approximated.
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Chapter 3

Solutions for Burgers’ Equation in the

Deterministic Version

This chapter is one of the most important, since we will begin with the development
of the main objective of this work. We will construct two spectral methods known
as Fourier-Galerkin and Fourier-Collocation using the projection and interpolation
operators respectively, considering an initial value problem that will be defined using
our objective equation presented in (1.3).

For this, to illustrate what we have studied in the Chapter (2), we will consider
the function space Hq

p [0, 2π] with the norm defined in (2.15) for some q that will
be specified later. We will assume that the problems have solutions u(x, t) ∈ Hq

p [D]
for every t ∈ I, where D = [xL, xR] for some fixed reals xL, xR and I = [0, T ] with
T > 0. So, given some real α ≥ 0 and an initial condition function u0(x) ∈ Hq

p [D],
our initial value problem is as follows





∂u
∂t +

1
2(u

2)x = α∂2u
∂x , 0 < t ≤ T, x ∈ I

u(x, 0) = u0(x), x ∈ I

(3.1)

The analytical solution of the previous problem was given in (1.12), and we ob-
serve that it is not easy to evaluate it directly. Therefore, it is necessary to choose
a suitable method of numerical integration to calculate the integrals involved, since
they have exponential behavior that is noticeably affected when the parameter α
is very small. However, precision problems can also arise because arithmetic op-
erations can generate considerable errors if they are not performed correctly, and
therefore this equation is not a good choice for finding solutions to the problem.

In the next section, we will present the aforementioned spectral methods consid-
ering the linear problem obtained by using the transformation given by (1.8), And
this will allow us to approximate the solutions of the problem (3.1) More easily and
with excellent precision. In addition, this will give us the advantage of having solu-
tions that can be considered exact and use them to compare them with those that
will be obtained in the numerical experiments that we will describe in the second
section when implementing these methods for the nonlinear problem (3.1), Since we
will observe that the precision will be much less because we will need to use nu-
merical methods to solve in the variable t, decreasing with respect to the parameter
α.
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3.1 Fourier Spectral Methods

In the following sections we will work with the problem obtained by the transfor-
mation of the problem (1.8) given by

u(x, t) = −2α
∂xϕ(x, t)

ϕ(x, t)
= −2α (logϕ(x, t))x (3.2)

with α > 0, and ϕ solves the following initial value problem





∂ϕ
∂t = αϕxx, 0 < t ≤ T, x ∈ I

ϕ(x, 0) = ϕ0(x) = e−
∫ x

0
u0(y)
2α

dy, x ∈ I

(3.3)

3.1.1 Fourier-Galerkin

In chapter 2 we saw that for a function ϕ ∈ H2
p [0, 2π] it can be written as

ϕ(x, t) =
∑

|n|≤∞
ϕ̂n(t)φn(x), ϕ̂n(t) =

1

2π
〈ϕ(x, t), φn(x)〉 (3.4)

where φn(x) = einx, and let’s assume that this function is the solution of the prob-
lem (3.3).

The Fourier-Galerkin method will be constructed using the project operator de-
scribed in (2.8) to project and force the function ϕ to satisfy the problem (3.3) on
a space that will be defined a continuation.

Let VN the space of trigonometric polynomials of degree 2N + 1 given by VN =
BN ∩ H2

p [0, 2π], where BN = span{φn(x) : |n| ≤ N}. Then for ϕ ∈ VN we can
obtain its expansion as

ϕN (x, t) =
∑

|n|≤N

ϕ̂n(t)φn(x), ϕ̂n(t) =
1

2π
〈ϕ(x, t), φn(x)〉 (3.5)

Substituting (3.4), and (3.5) into the equation (3.3) to taking the difference as
follows

[
∂

∂t
ϕN − α

∂2

∂x
ϕN

]
−
[
∂ϕ

∂t
− α

∂2ϕ

∂x

]
= RN (x, t)

where RN (x, t) is a residual function, and since the second term is exactly zero
because ϕ is the exact solution we have to

∂

∂t
ϕN − α

∂2

∂x
ϕN = RN (x, t)
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In the Fourier-Galerkin method, it is desired that the remainder RN belong to
the orthogonal space of VN , that is, for every ϕ, φ ∈ VN such that 〈ϕ−PNϕ, φ〉 = 0.
This is achieved by forcing for each |n| ≤ N the following condition

〈RN , φn〉 =
〈
∂ϕN

∂t
− α

∂2ϕN

∂x2
, φn

〉
= 0, φn ∈ VN , ∀t > 0 (3.6)

or equivalently

∫

D

∂

∂t
ϕN (x, t)φn(x)dx = α

∫

D

∂2

∂x2
ϕN (x, t)φn(x)dx, φn ∈ VN , ∀t > 0

Using the orthogonality 〈φk, φn〉 = 2πδkn, for each n fixed we have to

〈
∂ϕN

∂t
, φn

〉
=

〈
∑

|k|≤N

dϕ̂k(t)

dt
φk, φn

〉
= 2π

dϕ̂n(t)

dt

Note that the spatial interval is not the desired one, for this we are going to
define the following linear transformation from Dp = [0, 2π] to D = [xL, xR] given
by x = Pz+xL to escalate the problem, where P = xR−xL

2π and z ∈ Dp. Then, using
the chain rule we can rewritten the derivatives as

∂2ϕN

∂x2
= P 2∂

2ϕN

∂x2

and using ∂2

∂x2φn(x) = −P 2n2φn(x) we have to

α

〈
∂2ϕN

∂x2
, φn

〉
= −2παP 2n2ϕ̂n(t), |n| ≤ N

Therefore, we have the next ODE

dϕ̂n(t)

dt
= −αP 2n2ϕ̂n(t), |n| ≤ N

which is solved using the projection of the initial condition given by

ϕN (x, 0) =
∑

|n|≤N

ϕ̂n(0)φn(x), ϕ̂n(0) =
1

2π
〈ϕ0(x), φn(x)〉 (3.7)

We will denote λn = αP 2n2, so the exact solution for the above system is given
as follows

ϕ̂n(t) = ϕ̂n(0)e
−λnt, |n| ≤ N

Therefore, using (3.5) the solution can be expressed as

ϕN (x, t) =
∑

|n|≤N

ϕ̂n(0)e
−λntφ(x)
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We can notice that λn is actually an eigenvalue of the problem (3.3), which is
associated with the eigenvector ϕn(0). Therefore, we should note that what we are
actually solving is an eigenvalues problem to obtain a representation of the solution
in terms of its eigenvectors.

To see this more clearly, we will represent the solution by configuring the follow-
ing vectors

ϕ̂N (t) = [ϕ̂−N , ϕ̂−N+1(t), . . . , ϕ̂N (t)]T , ϕ̂N (0) = [ϕ̂−N (0), ϕ̂−N+1(0), . . . , ϕ̂N (0)]T

and the matrix

LN =




λ−N 0 . . . 0 0
0 λ−N+1 . . . 0 0
...

...
. . .

...
0 0 . . . λN−1 0
0 0 . . . 0 λN



,

then we can express the solution system as

ϕ̂N (t) = e−LN tϕ̂N (0),

where e−LN is the inverse of the exponential matrix of LN given by

eLN =




eλ−N 0 . . . 0 0
0 eλ−N+1 . . . 0 0
...

...
. . .

...
0 0 . . . eλN−1 0
0 0 . . . 0 eλN



.

From the above, we can notice that the solution approaches very fast to zero
when t tends to infinity. To show this, we can see that the solution is bounded as
follows

‖ϕN (x, t)‖2 =
∑

|n|≤N

|ϕ̂n(t)|2 =
∑

|n|≤N

|ϕ̂n(0)|2e−2λnt

≤ e−2t
∑

|n|≤N

|ϕ̂n(0)|2 = e−2t‖ϕ(0)‖2

showing us that the coefficients vanishing with exponential speed, which tells us that
the convergence must have the same behavior. We can verify this with the following
estimate

‖ϕ(x, t)− ϕN (x, t)‖2 =
∑

|n|>N

|ϕ̂n(0)|2e−λnt ≤ e−λN t
∑

|n|>N

|ϕ̂n(0)|2

≤ e−λN t
∑

|n|≤N

|ϕ̂n(0)|2 = e−λN t‖ϕN (0)‖2
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Therefore, the rate of convergence is exponential, which verifies the theory stud-
ied in chapter 2, ensuring an excellent approximation of the solution of the problem
(3.1), which is obtained using (1.8) to obtain

uN (x, t) = −2α
∂xϕN (x, t)

ϕN (x, t)
= −2α

∑

|n|≤N

inϕ̂n(0)e
−λntφn(x)

∑

|n|≤N

ϕ̂n(0)e
−λntφn(x)

(3.8)

The previous expression is much more practical to calculate solutions to the
problem (3.1), we only have to handle the arithmetic operations correctly, and with
low approximation orders we will have excellent results.

3.1.2 Fourier-Collocation

The main idea of this method that we will see next is very similar to the Fourier-
Galerkin method, except that we will use the interpolation operator described in
(2.25) for an odd number of points in the grid. For this, we must use another
polynomial space, which we already defined in chapter 2 as B̃N given by

B̃N = span

{(
cos(nx), 0 ≤ n ≤ N

2

)
∪
(
sin(nx), 1 ≤ n ≤ N

2
− 1

)}
.

Now we will look for a solution to the problem (3.3) in the space given by
SN = B̃N ∩H2

p [0, 2 pi], using the discrete expansion for the function ϕ as follows

JNϕ(x, t) =
∑

|n|≤N
2

ϕ̃n(t)e
inx, ϕ̃n(t) =

2N∑

j=0

ϕ(xj , t)e
−inxj (3.9)

where xj are given by

xj =
2πj

2N + 1
, j = 0, 1, . . . , 2N.

Remember that by (2.26) the previous expansion can be written equivalently
and also conveniently as

JNϕ(x, t) =

2N∑

j=0

ϕ(xj , t)ψj(x)

where ψj(xi) = δij for i, j = 0, 1, . . . , 2N , and satisfies JNϕ(xj , t) = ϕ(xj , t) for each
j.

Using the previous expansion in the equation (3.3) we can obtain a residual
function as we obtained it in the Fourier-Galerkin method given as follows

RN (x, t) =
∂JNϕ(x, t)

∂t
− α

∂

∂x2
JNϕ(x, t),
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and similarly, we must force the orthogonality, for which we must remember by (2.33)
that in this case, the discrete product coincides with the continuum, therefore, we
have to

〈RN , ψj〉N =

∫

I
RN (x, t)ψj(x)dx = 0, for j = 0, 1, . . . , 2N.

Since JNϕ(xj , t) = ϕ(xj , t) for every j = 0, 1 . . . , 2N , the orthogonality can be
satisfied by solving the following problem

dJNϕ(xj , t)

dt
= αJN

∂

∂x2
JNϕ(xj , t), j = 0, 1 . . . , 2N (3.10)

which is a system of 2N +1 ordinary differential equations that can be solved using
the initial condition given by

JNϕ(xj , t) = ϕ0(xj), , j = 0, 1 . . . , 2N

A convenient way to solve the above problem is to solve for each fixed j the
following system of differential equations for the coefficients ϕ̃n given by

dϕ̃n(t)

dt
= αn2ϕ̃n(t), |n| ≤ 2N

which is exactly the same that we obtained in the Fourier-Galerkin method, with
the solution given by

ϕ̃n(t) = ϕ̃n(0)e
−αn2t, |n| ≤ 2N

Finally, after solving the previous problem for each j we can express the solution
with the expansion given by (3.9), which is basically the same solution that we have
found using the Fourier-Galerkin method.

When we need to use some numerical method to solve in the variable t, it is
better to express the system of differential equations by configuring the following
vector

ϕN (t) = [ϕ(x0, t), ϕ(x1, t), . . . , ϕ(x2N , t)]
T

and using the differentiation matrix given by (2.32) to obtain

d

dt
ϕN (t) = αD

(2)
2NϕN (t)

In this way we can calculate derivatives directly in real space, being a great advantage
that we will discuss in the next section when implementing numerical methods based
on the previous representation.
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3.2 Numerical Experiments

This section intends to be the most important in the chapter since it will take advan-
tage of everything that has been previously studied and expand in the best possible
way the implementation of the spectral methods studied in the previous section.
For this, we will focus on the nonlinear problem defined in (3.1) directly, because
after understanding these tools you want to have the ability to attack more complex
problems such as (1.1) which it is nonlinear, and in general, in most problems, it is
not always possible to obtain analytical solutions, and then an option is to approx-
imate them with numerical methods.

According to what was studied in the previous section, we will start solving our
problem with each method considering α > 0, and later we will study the case when
α = 0. To find solutions we are going to use Euler’s method, either explicit or im-
plicit, to solve in the variable t, and due to the importance of carrying out numerical
studies, we will try to give a detailed methodology about each method implemented
to construct an algorithm that can be useful in the realization of computational
codes. Finally, with the aim of giving a more detailed analysis, we will present some
simulations of the results obtained.

3.2.1 Numerical Solutions for Burgers’ Equation with Viscosity

Simulations for Fourier-Galerkin Method

Following the ideas in the previous section for the Fourier-Galerkin method, we will
assume that the expansion of the solution of (3.1) is as follows

u(x, t) =
∑

|n|≤∞
ûn(t)φn(x), ûn(t) =

1

2π
〈u(x, t), φn(x)〉 ,

and as before φn(x) = einx.

Similarly, we consider the space VN = B̂N ∩ H2
p (D) where we will look for its

truncated expansion given by

uN (x, t) =
∑

|n|≤N

ûn(t)φn(x), ûn(t) =
1

2π
〈u(x, t), φn(x)〉 ,

which we are going to force to satisfy the following

〈RN , φn〉 =
〈
∂uN
∂t

+
1

2
(u2N )x − α

∂2uN
∂x2

, φn

〉
= 0, φn ∈ VN , ∀t > 0 (3.11)

or equivalently

∫

I

∂

∂t
uN (x, t)φn(x)dx = α

∫

I

∂2

∂x2
uN (x, t)φn(x)dx−

∫

I

1

2

∂

∂x
[uN (x, t)]2 φn(x)dx
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Since uN (x, t) and its derivatives are periodic in space, integrating by parts we obtain
that
∫

I

∂

∂t
uN (x, t)φn(x)dx = −α

∫

I

∂

∂x
uN (x, t)

∂

∂x
φn(x)dx+

∫

I

1

2
[uN (x, t)]2

∂

∂x
φn(x)dx

Then writing again as an inner product

〈
∂uN
∂t

, φn

〉
=

〈
−α∂uN

∂x
+

1

2
[uN ]2,

∂φn
∂x

〉

and using the orthogonality 〈φl, φn〉 = 2πδln, for each n fixed we have to

〈
∂uN
∂t

, φn

〉
=

〈
∑

|l|≤N

dûl(t)

dt
φl, φn

〉
= 2π

dûn(t)

dt

and for the other terms

〈
∂uN
∂x

− 1

2
[uN ]2,

∂φn
∂x

〉
=α

〈
−i
∑

|l|≤N

lûl(t)φl, inφn

〉

+

〈
1

2


∑

|p|≤N

ûp(t)φp




∑

|q|≤N

ûq(t)φq


 , inφn

〉

=− αn

〈
∑

|l|≤N

lûl(t)φl, φn

〉
− in

2

〈
∑

|p|≤N

∑

|q|≤N

ûp(t)ûq(t)φp+q, φn

〉

=− 2παn2ûn(t)− inπ
∑

p+q=n

ûp(t)ûq(t), |q|, |p| ≤ N.

Therefore, using the linear transformation from Dp = [0, 2π] to D = [xL, xR] given
by x = Pz+xL to escalate the problem, where P = xR−xL

2π and z ∈ Dp, we have the
following system of nonlinear ordinary differential equations

dûn(t)

dt
= −αP 2n2ûn(t)−

in

2
P
∑

p+q=n

ûp(t)ûq(t), |q|, |p| ≤ N, (3.12)

or equivalently

dûn(t)

dt
= −αP 2n2ûn(t)−

in

2
P
∑

|q|≤N

ûn−q(t)ûq(t), |n| ≤ N,

which is solved using the initial condition of the original projected problem on the
space VN , that is,

PNu0 =
∑

|n|≤N

anφn(x), an =
1

2π
〈u0(x), φn(x)〉.

40



3.2 Numerical Experiments Solutions for Burgers’ Equation in the . . .

This problem can be treated in different ways and, in this work, we will develop
it with the following approach. First, let’s discard the terms ûq such that |q| > N
on the right side of the equation above, to get the following

dûn(t)

dt
= −αP 2n2ûn(t)−

in

2
P
∑

|q|≤N

ûn−q(t)ûq(t), |n− q| ≤ N,

which is a system of 2N + 1 equations.

There is a wide variety of numerical methods to solve the above problem, and
since this is not linear, it is not easy to justify choosing an appropriate method,
since advanced knowledge of numerical analysis is required to investigate its char-
acteristics. The way to choose a candidate method is by investigating its numerical
stability, which guarantees that the numerical solution does not explode towards
infinity and that it is at least bounded.

In general, explicit methods are not suitable for nonlinear problems and are com-
monly handled by implicit methods. To show the implementation, and in addition
to looking at its most relevant characteristics, we will solve the problem using Eu-
ler’s implicit method. First, note that when n = 0 we have û0(t) = û0(0), and that
the nonlinear term involves the term ûn only when q = 0. So, using the integrating
factor eλnt with λn = αP 2n2 + in

2 Pû0(0) we can obtain the following formulation

d
[
eλnt

]
ûn(t)

dt
= − in

2
Peλnt


û0(0)ûn(t) +

∑

|q|≤N
q 6=0,n

ûn−q(t)ûq(t)


 ,

and its solution using implicit Euler

ûj+1
n = e−λn∆t


û

j
n −∆t

in

2
P
∑

|q|≤N
q 6=0,n

ûjn−qû
j
q


−∆t

in

2
Pû0(0)û

j+1
n ,

and then solving for the term ûj+1
n to obtain

ûj+1
n =

e−λn∆t

1 + ∆t in2 Pû0(0)


û

j
n −∆t

in

2
P
∑

|q|≤N
q 6=0,n

ûjn−qû
j
q


 .

Furthermore, using this formulation repeatedly for each j gives us

ûj+1
n =

[
e−λn∆t

1 + ∆t in2 Pû0(0)

]j+1

û0n −∆t
in

2
P

j+1∑

k=1

[
e−λn∆t

1 + ∆t in2 Pû0(0)

]k ∑

|q|≤N
q 6=0,n

ûj+1−k
n−q ûj+1−k

q

(3.13)
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ûj+1
N = Lj+1

N û0N −∆t
in

2
P

j+1∑

k=1

Lk
NBN (ûj+1−k

N )

Now, we will proceed to describe the steps necessary to implement the method based
on the above. The simulations we are going to show were based on the formulation
(3.13), taking advantage of the fast Fourier transformation to calculate the coeffi-
cients ûn, since it allows us to go from physical space to the space of Fourier and
conversely. Also, it is worth mentioning that the codes used in this work can be
found at https://github.com/alanmatzumiya/Maestria.git.

To carry out these numerical experiments it was necessary to follow the following
steps:

1. Set the intervals to consider, [xL, xR] for physical space and [t0, tf ] for time,
and give an initial condition function u0. It is also necessary to choose the
value of N , and another for the parameter α.

2. We proceed to calculate the points in the spatial grid where we want to obtain
the solution, and for this, we define the points zi ∈ [0, 2π] as

zi =
2πi

N
, i = 0, 1, . . . , N

which are used to obtain the points xi ∈ [xL, xR]

xi = Pzi + xL, P =
xR − xL

2π

To obtain the points tj ∈ [t0, tf ], we define the sequence j = 0, 1, . . . ,M , for
some positive M , and calculate the following

tj = t0 + j∆t, ∆t =
tf − t0
M

The values |n| = 0, 1, . . . , N must be established to calculate in, n2, which are
required to approximate the derivatives.

3. Calculate the coefficients û0 of the initial condition function u0, using the fast
Fourier transformation based on the already fixed spatial grid. So, it is possible
to start the recursive rule given by (3.13) for every tj .

4. Finally, the approximation obtained is evaluated using the equation given by

uN (x, tj) =
∑

|n|≤N

ûn(tj)e
inx.

For the numerical study, we will establish the following initial condition

u0(x) = e0.05x
2
, x ∈ [xL, xR] (3.14)
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To compare results, we will use the approximation given by (3.8) as the exact
solution. In the figure 3.1 shows the maximum distance over every t ∈ [0, 100]
between the exact solution and its approximations given by (3.13) for N = 2m,
m = 4, . . . , 12, ∆t = 1.0×10−5, and different values of α. Furthermore, in Tables 3.1
and 3.2, we can see the numerical values of these distances for different configurations
of N and ∆t. Similarly, in Tables 3.3 and 3.4 but for α = 0.005.

Figure 3.1: (a) L2-norm between the exact solution and its approximations using
Galerkin method. (b) Max norm between the exact solution and its approximations.
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Figure 3.2: Numerical solution for (3.1) using (3.13) with α = 1.0, N = 2048, and
∆t = 1.0× 10−5.

Figure 3.3: Numerical solution for (3.1) using (3.13) at the time T = 100 with
α = 1.0, and ∆t = 1.0× 10−5. (b) Point-wise error of approximation
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Approximation Error

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4 ∆t = 1× 10−5

16 0.72504 0.72504 0.72504 0.72504

32 6.90249 ×10−2 6.88052 ×10−2 6.87838 ×10−2 6.87816 ×10−2

64 1.23827 ×10−3 8.85367 ×10−4 8.80521 ×10−4 8.80410 ×10−4

128 9.43454 ×10−4 9.41793 ×10−5 9.41148 ×10−6 9.41827 ×10−7

256 9.43454 ×10−4 9.41793 ×10−5 9.41109 ×10−6 9.36411 ×10−7

512 9.43454 ×10−4 9.41793 ×10−5 9.41109 ×10−6 9.36411 ×10−7

1024 ∗ 9.41793 ×10−5 9.41109 ×10−6 9.36411 ×10−7

2048 ∗ ∗ 9.41109 ×10−6 9.36411 ×10−7

Table 3.1: Error using L2-norm with α = 1.0

Approximation Max Error

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4 ∆t = 1× 10−5

16 0.203363 0.203333 0.203331 0.20333

32 2.64192 ×10−2 2.6248 ×10−2 2.62491 ×10−2 2.62492 ×10−2

64 6.93001 ×10−4 4.11641 ×10−4 3.85563 ×10−4 3.82972 ×10−4

128 4.74934 ×10−4 4.73649 ×10−5 4.74295 ×10−6 5.16105 ×10−7

256 4.74936 ×10−4 4.7368 ×10−5 4.72569 ×10−6 4.64922 ×10−7

512 4.74936 ×10−4 4.7368 ×10−5 4.72569 ×10−6 4.64922 ×10−4

1024 * 4.7368 ×10−5 4.72569 ×10−6 4.64922 ×10−7

2048 * * 4.72569 ×10−6 4.64922 ×10−7

Table 3.2: Error using Max norm with α = 1.0
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Figure 3.4: Numerical solution for (3.1) using (3.13) with α = 0.005, N = 2048, and
∆t = 1.0× 10−5.

Figure 3.5: Numerical solution for (3.1) using (3.13) at the time T = 100 with
α = 1.0, and ∆t = 1.0× 10−5. (b) Point-wise error of approximation
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Approximation Error

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4 ∆t = 1× 10−5

16 9.95328 9.91901 9.91597 9.91567

32 2.72607 2.70558 2.70347 2.70326

64 2.50343 2.45988 2.45543 2.45497

128 2.16142 2.06992 2.05918 2.05795

256 1.3658 1.19385 1.17602 1.17412

512 0.339826 0.265843 0.262164 0.261805

1024 0.161405 0.133743 0.131882 0.131699

2048 6.50292 ×10−2 4.70602 ×10−2 4.57371 ×10−2 4.56090 ×10−2

4096 * 7.26917 ×10−3 6.64157 ×10−3 6.60753 ×10−3

Table 3.3: Error using L2-norm with α = 0.005

Approximation Max Error

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4 ∆t = 1× 10−5

16 2.50002 2.48992 2.48891 2.48881

32 1.21263 1.20544 1.2047 1.20463

64 1.21269 1.17736 1.17517 1.17495

128 1.10164 1.03493 1.03093 1.03048

256 0.954369 0.881472 0.873392 0.87259

512 0.665071 0.418735 0.398664 0.396931

1024 0.241841 0.244188 0.244437 0.244461

2048 0.133067 0.104675 0.109151 0.109596

4096 * 2.37273 ×10−2 1.75687 ×10−2 1.69531 ×10−2

Table 3.4: Error using Max norm with α = 0.005

47



3.2 Numerical Experiments Solutions for Burgers’ Equation in the . . .

Simulations for Fourier-Collocation Method

Following the same ideas from the previous section for Fourier-Collocation, we will
seek solutions in the space given by SN = B̃N ∩ H2

p [0, 2π], and using the discrete
expansion to the problem (3.1) as follows

JNu(x, t) =
∑

|n|≤N
2

ũn(t)e
inx, ũn(t) =

2N∑

j=0

u(xj , t)e
−inxj

or equivalently

JNu(x, t) =

2N∑

j=0

u(xj , t)ψj(x)

where xj are given by

xj =
2πj

2N + 1
, j = 0, 1, . . . , 2N.

For this case, the Fourier-Collocation method will be given by the following
problem

RN (xj , t) =
∂uN
∂t

(xj , t)−
∂2uN
∂x2

(xj , t) +
1

2

∂ [uN ]2

∂x
(xj , t) = 0 (3.15)

which is a system of 2N +1 ordinary differential equations that can be solved using
the initial condition given by

JNu(xj , t) = u0(xj), , j = 0, 1 . . . , 2N

By Setting a vector as follows

uN (t) = (uN (x0, t), uN (x1, t), . . . , uN (x2N , t))
T ,

and the above system of ordinary differential equations can be written as follows

duN (t)

dt
= αD2

NuN (t)− 1

2
DNu

2
N (t)

where DN is the matrix given by (2.32), that represents discrete Fourier differenti-
ation, which can be rewrite as

DN = C−1Λ2
NC (3.16)

where ΛN = diag{ik}|k|≤N , C represents the discrete Fourier transform and C−1

the inverse.
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Note that the situation here is very different compared to the systems obtained
with Fourier-Galerkin. The representation of the non-linear term is more practical
to handle with implicit methods, for example, an implicit approach is as follows

uN (ti+1) = C−1ΛNCuN (ti)−
∆t

2
DNu

2
N (ti+1)

It is possible to formulate the above problem as

W (uN (ti+1)) = C−1ΛNCuN (ti)− uN (ti+1)−
∆t

2
DNu

2
N (ti+1),

and then we must find uN (ti+1) that satisfies W (uN (ti+1)) = 0, for example, using
the Newton-Raphson method. However, this formulation may require many calcu-
lations because the differentiation matrix increases as a function of N , and therefore
the number of operations. Here we are going to develop a numerical solution that is
more practical to implement, implicitly approaching as we did with Fourier-Galerkin
on the linear term as follows

[
IN +

∆t

2
u0ΛN

]
uN (ti+1) = e−∆tΛ0

N

[
uN (ti)−

∆t

2
DNu

2
N (ti)

]

where Λ0
N = diag{αk2 + ik

2 u0}|k|≤N , and solving for uN (ti+1) gives us

uN (ti+1) =

[
IN +

∆t

2
u0ΛN

]−1

e−∆tΛ0
N

[
uN (ti)−

∆t

2
DNu

2
N (ti)

]
(3.17)

which is very similar to 3.13, except for the nonlinear term.

This formulation will be used for its implementation, and we will present some
numerical results that were obtained using the same information that was used with
Fourier-Galerkin, the difference is that the calculations are performed in real space
using the differentiation matrix DN , and in this case, we have the advantage of ap-
proximating the second derivative with D2

N = DN ·DN .

The description of the following results is as follows. In the figure 3.6 shows
the maximum distance over every t ∈ [0, 100] between the exact solution and its
approximations given by (3.17) for N = 2m, m = 4, . . . , 12, ∆t = 1.0 × 10−5, and
different values of α. Furthermore, in Tables 3.5 and 3.6, we can see the numerical
values of these distances for different configurations of N and ∆t. Similarly, in
Tables 3.7 and 3.8 but for α = 0.005.

49



3.2 Numerical Experiments Solutions for Burgers’ Equation in the . . .

Figure 3.6: (a) L2-norm between the exact solution and its approximations using
Collocation method. (b) Max norm between the exact solution and its approxima-
tions.
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Figure 3.7: Numerical solution for (3.1) using (3.17) with α = 1.0, N = 2048, and
∆t = 1.0× 10−5.

Figure 3.8: Numerical solution for (3.1) using (3.17) at the time T = 100 with
α = 1.0, and ∆t = 1.0× 10−5. (b) Point-wise error of approximation
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Approximation Error

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4 ∆t = 1× 10−5

16 0.721112 0.721112 0.721112 0.721112

32 4.71797 ×10−2 4.72892 ×10−2 4.73004 ×10−2 4.73015 ×10−2

64 1.17954 ×10−3 7.35344 ×10−4 7.27561 ×10−4 7.27283 ×10−4

128 9.43454 ×10−4 1.75152 ×10−4 1.74583 ×10−4 1.74574 ×10−4

256 9.43454 ×10−4 1.15509 ×10−4 1.14669 ×10−4 1.14659 ×10−4

512 9.43454 ×10−4 9.41793 ×10−5 7.78847 ×10−5 7.78707 ×10−5

1024 ∗ 9.41793 ×10−5 5.32213 ×10−5 5.32019 ×10−5

2048 ∗ ∗ 3.56779 ×10−5 3.56498 ×10−5

4096 ∗ ∗ 2.24122 ×10−5 ∗

Table 3.5: Error using L2-norm with α = 1.0

Approximation Max Error

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4 ∆t = 1× 10−5

16 0.317617 0.317617 0.317617 0.317617

32 1.95279 ×10−2 1.96812 ×10−2 1.96965 ×10−2 1.96981 ×10−2

64 6.21793 ×10−4 2.9813 ×10−4 2.80086 ×10−4 2.78934 ×10−4

128 4.74952 ×10−4 1.64746 ×10−4 1.6473 ×10−4 1.64728 ×10−4

256 4.74936 ×10−4 1.52482 ×10−4 1.52467 ×10−4 1.52465 ×10−4

512 4.74936 ×10−4 1.47249 ×10−4 1.47234 ×10−4 1.47232 ×10−4

1024 ∗ 1.45032 ×10−4 1.45017 ×10−4 1.45016 ×10−4

2048 ∗ ∗ 1.43941 ×10−4 1.4394 ×10−4

4096 ∗ ∗ 1.43411 ×10−4 ∗

Table 3.6: Error using Max norm with α = 1.0
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Figure 3.9: Numerical solution for (3.1) using (3.17) with α = 0.005, N = 2048, and
∆t = 1.0× 10−5.

Figure 3.10: Numerical solution for (3.1) using (3.17) at the time T = 100 with
α = 0.005, and ∆t = 1.0× 10−5. (b) Point-wise error of approximation.
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Approximation Error

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4 ∆t = 1× 10−5

16 1.36189 1.35883 1.35852 1.35849

32 2.67506 2.65305 2.65078 2.65055

64 2.50365 2.45855 2.45432 2.45387

128 2.15795 2.0632 2.05589 2.05497

256 1.362 1.18393 1.16697 1.16532

512 0.350775 0.304595 0.300865 0.300499

1024 0.168462 0.140332 0.13803 0.137804

2048 6.56161 ×10−2 4.63808 ×10−2 4.49226 ×10−2 4.47813 ×10−2

4096 ∗ 7.66246 ×10−3 6.9909 ×10−3 6.9909 ×10−3

Table 3.7: Error using L2-norm with α = 0.005

Approximation Max Error

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4 ∆t = 1× 10−5

16 0.695784 0.695659 0.695646 0.695645

32 1.20278 1.19418 1.19329 1.1932

64 1.22454 1.18903 1.18507 1.18467

128 1.11999 1.0238 1.01754 1.01701

256 0.927954 0.877058 0.872508 0.87201

512 0.664133 0.415288 0.39714 0.395563

1024 0.247742 0.259451 0.260605 0.26072

2048 0.126824 0.103297 0.107102 0.10748

4096 ∗ 2.04624 ×10−2 1.76513 ×10−2 1.76513 ×10−2

Table 3.8: Error using Max norm with α = 0.005
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3.2.2 Numerical Solutions for Burgers’ Equation without Viscosity

To finish the section, we will study the problem (3.1) without viscosity, that is, when
α = 0. So the problem is the following





∂u
∂t +

1
2(u

2)x = 0, 0 < t ≤ T, x ∈ D

u(x, 0) = u0(x), x ∈ D
(3.18)

This problem, which seems much simpler, turns out to be very interesting, be-
cause it presents relevant characteristics regarding the physical interpretation of the
problem in general, that is, the case with non-zero viscosity.

The previous equation interprets the conservation of energy and is considered
as a non-linear conservation law. We can understand this if we consider the func-
tion u as the speed of a fluid that conserves its energy with a flow density given by
f(u) = u2

2 .

The above can be shown considering that u ∈ H1
p [D], and multiplying by u and

integrating both sides of the equation on the domain D to prove that ‖u‖ does not
change over time, that is,

1

2

d

dt

∫ 2π

0
u2(x, t)dx = −

∫ 2π

0
u2(x, t)

∂u(x, t)

∂x
dx = −1

3
u3(x, t)

∣∣∣
2π

0
.

and because u is periodic, we have to

1

2

d

dt
‖u(x, t)‖2 = 0.

This means that the energy is conserved with the same initial energy since we must
bear in mind that this represents the kinetic energy of a fluid that travels with a
velocity given by u0.

In any problem, these characteristics are of utmost importance, this is because
we must consider the behavior of the solutions when they must be approached with
some numerical method. In the literature, when a solution remains bounded in time,
the problem is said to be well defined. In the analysis context, this assures us the
existence of a continuously differentiable solution u, and that besides being unique,
it is possible to approximate it.

However, approximating the solutions to this problem using spectral methods
can be more complicated if its characteristics are not well understood. Next, we
will see that under a certain condition it is possible to find a single analytical so-
lution and that otherwise, it may lose its uniqueness when developing discontinuities.
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First, let’s define the curves x = x(t) that start at a point x0 ∈ R, and satisfy
the following problem





x′(t) = u(x(t), t), t > 0,

x(0) = x0.

The solutions for each x0 are known as characteristic curves, which pass through
the solution u = u(x(t), t). It is well known in the theory of differential equations
that when u(x, t) is locally Lipschitz in the variable x, and continues in the variable
t, the above equation admits a single solution x(t) for each x0 ∈ R. So, assuming the
above we have that for a solution x(t) corresponding to a fixed x0 ∈ R, it satisfies
the following

d

dt
[u(x(t), t)] = x′(t)ux(x(t), t) + ut(x(t), t)

= u(x(t), t)ux(x(t), t)− u(x(t), t)ux(x(t), t) = 0

which tells us that the function u(x(t), t) is independent of the variable t, remaining
constant along the characteristic curve. Therefore, we have to

u(x(t), t) = u(x(0), 0) = u0(x0)

Furthermore, we have that the solution x(t) will be given by the following curve

x(t) = x0 + u0(x0)t, t > 0.

which allows us to write the solution u(x, t) as follows

u(x, t) = u0(x0), x0 = x− u0(x0)t (3.19)

Note that the Lipschitz condition is necessary for the uniqueness of the above
solution, since, conversely, if we set two different starting points x0, x1 such that
x0 < x1, then its curves characteristics intersect for some t, that is,

x0 + u0(x0)t = x1 + u0(x1)t,

and using the mean value theorem we have that for some c ∈ (x0, x1) the time t is
given by

t =
x1 − x0

u0(x0)− u0(x1)
= − 1

u′0(c)
,

The above tells us that when these two curves intersect, the solution u(x, t) can-
not be continuous in the time t given by the previous equation. This is because
u0(x0) 6= u0(x1), and since the solution is constant over time we would have that
u(x, t) = u0(x0) = u0(x1), which is impossible.
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Therefore, the time t for which two curves intersect represents a discontinuity,
and that can be calculated by

Tc = min
x∈R

[ −1

u′0(x)

]
(3.20)

and we can observe that the continuity of the solution u is assured if Tc < 0, which
depends only on the initial condition u0.

This type of information allows us to know the criteria that must be considered
when implementing numerical methods, but also the physical interpretation of the
problem can be useful. For example, the solution to this problem can be considered
to simulate the evolution of the profile of a sea wave that deforms as it approaches
the coast until it breaks. But when this occurs, the deformation of the wave stops
precisely at the time Tc.

We must consider that the problem without viscosity supposes that the fluid
behaves in an ideal or perfect way, traveling as if they were separate sheets without
rubbing. But in real life, fluids always have a certain degree of viscosity, that is,
the fluid sheets can rub and cause energy dissipation, and for these cases, we could
consider the problem with sufficiently small values of α. So a question that naturally
arises is what the behavior of the solutions looks like when α approaches zero.

In chapter 1 we obtained the solution of the problem (3.1), which is given by
(1.12), and from this equation we can see that the solutions are infinitely differ-
entiable for any value of α > 0. Instinctively, we can notice that the solution
approaches the solution of the equation without viscosity when α approaches zero.
In fact, the solution obtained as a limit when α approaches zero is known as the
entropy solution, which has been studied in [33], [34] and in [32] has been proved
that this solution is unique.

In order to illustrate what we have previously discussed, we will consider the
problem (3.18) with the following initial condition function

u0(x) = e−0.005x2
, x ∈ D (3.21)

where D = [xL, xR], and considering the interval I = [0, Tc] for a value of Tc given
by (3.20).

In the following simulations, we will use the Fourier-Galerkin method given in
(3.13) to obtain approximations with different values of α, and we will see how they
approximate the exact solution of the problem (3.21 ) which was given in (3.19).
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Figure 3.11: Numerical solution for (3.1) using (3.13) with α = 1.0×10−5, N = 256,
and ∆t = 1.0× 10−3.

Figure 3.12: Numerical solution for (3.1) using (3.13) at the time Tc with α =
1.0× 10−5, and ∆t = 1.0× 10−3. (b) Point-wise error of approximation.
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Figure 3.13: (a) Exact solution for (3.1), and its approximations using (3.13) at the
time Tc with initial condition u0(x) = e−0.005x2

, x ∈ [−60, 60]. (b) Pointwise error
of approximation.

Figure 3.14: Numerical approximation for 3.1 using (3.13) with N = 512, u0(x) =
e−0.005x2

, x ∈ [−60, 60], and t ∈ [0, T c].
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Approximation Distance

N ∆t = 1× 10−2 ∆t = 1× 10−3 ∆t = 1× 10−4

16 0.285531 0.285732 0.285752

32 0.222737 0.223260 0.223312

64 0.160385 0.162782 0.163025

128 0.129297 0.133322 0.133733

256 0.083291 0.091449 0.092320

Table 3.9: Distance between exact solution for (3.18) and the approximation for
(3.1) with α = 1.0× 10−5.

Figure 3.15: Exact solution for (3.18) and different approximations using (3.13) with
N = 256, and ∆t = 1.0× 10−3.
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Chapter 4

Numerical Solutions for Burgers’ equation in

the Stochastic Version

The objective of this chapter is to show how stochastic partial differential equations
can be solved using spectral methods, for which it is much more difficult to find
analytical or even numerical solutions. For this, we will dedicate the first section
of this chapter to describe in the best possible way the details about a spectral
method based on the Hermite series that has been studied in [1], which associates a
stochastic partial differential equation with the well-known equation Fokker-Planck-
Kolmogorov, which is a partial differential equation that describes the time evolution
of the probability density function of the velocity of a particle under the influence
of random forces.

We will use some results and definitions from the appendix A since the theoret-
ical tools involved in the development of this method are outside the limitations of
this work. This appendix contains the concepts necessary to understand the basic
ideas of the method implementation that we will use in the second and last sec-
tion considering the stochastic Burgers’ equation that we have presented in (1.14).
Finally, we will describe and show some numerical simulations.

4.1 Spectral Approximation for Fokker-Plank-Kolmogorov

Equation

The method that we are going to describe in this section will be developed in a space
of Hilbert H with interior product 〈·, ·〉H, where we will define a Gaussian measure µ
with zero mean. Based on [1], the Fokker-Planck-Kolmogorov equation is presented
as follows

∂u

∂t
=

1

2
Tr(D2u) + 〈A(x), Du〉H + 〈B(x), Du〉H, x ∈ D(A) (4.1)

where Tr is the trace operator, A : D(A) ⊂ H → H is a linear differential operator,
B : D(B) ⊂ H → H is a nonlinear operator, and D represents the Frechet derivative.

The main idea of the method is to solve the previous equation associating the
following stochastic differential equation

dXt = AXtdt+B(Xt)dt+ dWt (4.2)
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where Wt is a process Q-Wiener as defined in (A.1.10), and the solution for the
equation (4.1) is defined as follows

u(x, t) = E [u0(X
x
t )] (4.3)

where u0 : H → R, and Xx
t is the solution of the equation (4.2).

Following our reference, the solution to the problem (4.1) is represented by an
expansion known as Fourier-Hermite which is given by the following series

u(x, t) =
∑

n∈J
un(t)Hn(x), x ∈ H, t ∈ [0, T ], (4.4)

where un : [0, T ] → R and Hn(x) are the Hermite functionals defined in A.6, and J
as in A.7.

The above expansion can be justified by the Lemmas A.1 and A.2, and also is
known as the deterministic Wiener-Chaos descomposition. Similarly, as we have
seen in the previous chapter, it must satisfy the problem (4.1). For this, define the
following operator

Lu =
1

2
Tr(D2u) + 〈Ax,Du〉H, x ∈ H (4.5)

which represents the linear part of (4.1), and by Lemma A.2 satisfies the following

Lu = −
∑

n∈J
un(t)λnHn(x). (4.6)

So, substituting the expansion on the left side of the equation (4.1) we get

∂u

∂t
=
∑

n∈J
u̇n(t)Hn(x), (4.7)

and for the non-linear term

〈B(x), Du〉H =

〈
B(x), Dx

∑

n∈J
un(t)Hn(x)

〉

H

=
∑

n∈J
un(t) (B(x), DxHn(x))H (4.8)

Therefore, by (4.6 - 4.8) the equation (4.1) can be written as

∑

n∈J
u̇n(t)Hn(x) = −

∑

n∈J
un(t)λnHn(x) +

∑

n∈J
un(t) (B(x), DxHn(x))H
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To develop the above, in the space H define the Gaussian measure µ(dx) =
1√
2π
e−

x2

2 . So, multiplying the previous equation by Hm(x), m ∈ J and integrating

over H with respect to the measure µ(dx) we have to

∑

n∈J
u̇n(t)

∫

H
Hm(x)Hn(x)µ(dx) =−

∑

n∈J
un(t)λn

∫

H
Hm(x)Hn(x)µ(dx)

+
∑

n∈J
un(t)

∫

H
Hm(x) (B(x), DxHn(x))H µ(dx)

and also using the orthogonality of the system {Hm(x)}, we get the following infinite
system of coupled ordinary differential equations

u̇m(t) = −um(t)λm +
∑

n∈J
un(t)Cn,m, n,m ∈ J (4.9)

where Cn,m is given by

Cn,m =

∫

H
Hm(x) (B(x), DxHn(x))H µ(dx) (4.10)

We need to truncate and solve the above system to get approximations of the
solution to the equation (4.1), which will be done in the next section focusing on
the Burgers’ equation given by (1.14).

4.2 Numerical Solution for Burgers’ Equation

Let H = L2(0, 1). Let’s consider an initial value problem for (1.14) as follows

dX(ξ, t) =

[
α∂2ξX(ξ, t) +

1

2
∂ξ
(
X2(ξ, t)

)]
dt+ dWt(ξ, t), ξ ∈ [0, 1] (4.11)

The boundary condition and its initial condition are respectively

X(0, t) = X(1, t) = 0, t > 0

X(ξ, 0) = x(ξ), x ∈ H,

where W is a cylindrical Wiener process on H as was given by A.1.10, associated to
a stochastic basis (Ω,F ,P, {Ft}t≥0), and as usually α > 0 is the viscosity coefficient.

Using the above problem, we will proceed to develop the implementation of the
method described in the previous section.

4.2.1 Method Description and Its Implementation

We will denote the functions space that vanishes at the borders as H1
0 (0, 1). Setting

A = α∂2ξ and B = 1
2∂ξ(x

2), x ∈ H, with its domains D(A) = H2(0, 1)∩H1
0 (0, 1) and
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D(B) = H1
0 (0, 1) respectively, then by (4.2), the equation (4.11) can be rewritten as

dX = [AX +B(X)]dt+ dWt

X(0) = x, x ∈ H

where A have eigenfunctions in H given by

ek(ξ) =
√
2 sin (kπξ), ξ ∈ [0, 1], k ∈ N

Note that the operator A satisfies Aek = −απ2k2ek for k ∈ N, then if we set
Λ = (−A)−1 we have that Λ−1/2ek =

√
2απ|k|ek.

Therefore, as in (4.9) we need to solve the following system

u̇m(t) = −um(t)λm +
∑

n∈J
un(t)Cn,m, n,m ∈ J (4.12)

We need to calculate the value of the constants Cn,m , then we need to calculate

expressions such as B(x), DxHn(x). Note that x can be written as x =
∑

k

βkek ,

with βk := 〈x, ek〉H. Then we have

B(x) =
1

2
∂ξ

(
∑

k

βkek

)2

=
1

2
∂ξ

[
∑

l

∑

k

βlβkelek

]
=

1

2

∑

l

∑

k

βlβk(ele
′
k + e′lek)

and for DxHn(x) we have

DxHn(x) =

∞∑

j=1

∞∏

i=1.i 6=j

Pni
(〈x,Λ−1/2ei〉H)P ′

nj
(〈x,Λ−1/2ej〉H)Λ−1/2ej

Therefore, Cn,m given by (4.10) gives

Cn,m =
1

2

∫

H
Hm(x)µ(dx)

∞∑

j=1

∞∏

i=1,i 6=j

Pni
(〈x,Λ−1/2ei〉H)P ′

nj
(〈x,Λ−1/2ej〉H)

√
2απ|j|

·
∑

l

∑

k

βlβk(ele
′
k + e′lek)

=
1

2

∫

H
µ(dx)

∞∑

j=1

√
2απ|j|Pmj

(〈x,Λ−1/2ej〉H)P ′
nj
(〈x,Λ−1/2ej〉H)

·
∞∏

i=1,i 6=j

Pni
(〈x,Λ−1/2ei〉H)Pmi

(〈x,Λ−1/2ei〉H)

·
∑

l

∑

k

βlβk(ele
′
k + e′lek)
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So, to obtain a truncated approximation of the solution, the following set of
indices is considered

JM,N = {γ = (γi, 1 ≤ γi ≤M) | γi ∈ {0, 1, · · · , N}} (4.13)

this is the set of M -tuple which can take values in the set {0, 1, · · · , N}.

For N1 ∈ N define as the set SN1 = {n1, n2, · · · , nN1 : ni ∈ JM,N , i = 1, · · · , N1}.
Then for n,m ∈ SN we have

C̄n,m =
1

2

∞∑

j=1

√
2απ|j|

∫

RM

Pmj
(ξj)P

′
nj
(ξj)µ(dξj)

·
M∏

i=1,i 6=j

Pmi
(ξi)Pni

(ξi)µ(dξi)

M∑

l=1

M∑

k=1

βlβk(ele
′
k + e′lek)

and for m1,m2, · · · ,mM ∈ JM,N the system (4.9) give us

u̇mi
(t) = −umi

(t)λmi
+

M∑

j=1

unj
(t)Cnj ,mi

, 1 ≤ i ≤M (4.14)

The solutions of the previous system can be calculated in terms of their eigen-
vectors by establishing the following vector

UM (t) =
(
um1(t) um2(t) . . . umM

(t)
)T

and for its derivatives

U̇M (t) =
(
u̇m1(t) u̇m2(t) . . . u̇mM

(t)
)T

So, we can now write the system (4.14) as

U̇M (t) = AUM (t) (4.15)

where the matrix A is given by

A =




−λ1 + C1,1 C2,1 . . . CM−1,1 CM,1

C1,2 −λ2 + C2,2 . . . CM−1,2 CM,2
...

...
. . .

...
...

C1,M−1 C2,M−1 . . . −λM−1 + CM−1,M−1 CM,M−1

C1,M C2,M . . . CM−1,M −λM + CM,M




where λi = λmi and Ci,j = Cni,mj
para 1 ≤ i, j ≤M .

Then, if A has M real and distint eigenvalues ηi and M eigenvectors Vi, then the
solution to (4.15) is given by

UM (t) =

M∑

j=1

ciVie
ηit (4.16)
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In the case when some eigenvalue is complex, we can write it together with its
eigenvector as follows

V = a+ ib, η = β + iµ

to get the solutions

eβt(a cos(µt)− b sin(µt)), eβt(a sin(µt) + b cos(µt))

which are real and different.

Then we can write the approximation of the solution of (4.1) as

uM (x, t) =
∑

n∈JM,N

un(t)Hn(x) = UM (t)HM (x), x ∈ H, , t ∈ [0, T ]. (4.17)

Also, if u(ξ, t) = E [Xt(ξ)], then satisfies the problem given by

∂u

∂t
= α

∂2u

∂ξ2
+ ∂ξ [u(ξ, t)]

2

with the initial condition u(ξ, 0) = E [X0].

4.2.2 A Functional to obtain Initial Conditions

The interesting thing about the equation (4.1), is that there is no standard way to
define an initial condition. For this problem, a functional is defined that acts in the
initial condition, and because there are different ways of defining this functional, the
method may change. For this work, the following functional was chosen

uz00 (g) := g(z0), for fixed z0 ∈ [0, 1].

To construct the initial condition, the following set of points is considered

P = {zi, 0 ≤ i ≤ p : z0 = 0, zp = 1}

Then for each point zi ∈ P such that X0(zi) = X(0, zi) set u0(x) as the evaluation
functional zi −→ Xx

t (zi). Then from (4.3) we obtain

u(0, x) = E[uzi0 (X
x
0 )] = Xx(0, zi) = x(zi) (4.18)

For other hand

u(0, x) =
∑

n∈JM,N

un(0)Hn(x)

multiplying for Hm(x) and integrating over space L2(H, µ)

um(0) =

∫

H
x(zi)Hm(x)µ(dx)
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Note that in the direction of the eigenfunction ek the expression x can be written as
(x, ek)Hek, then we can writeHm(x)x(zi) in the direction ek as Pmk

(ξk)(x, ek)Hek(zi)

with ξk = (x,Λ− 1
2 ek) = ‖λk‖(x, ek)H and Pmk

is given by (A.4). Then we have

uzim(0) =

∫

H
x(zi)Hm(x)µ(dx)

=

∫

RN

∞∑

k=1

Pmk
(ξk)(x, ek)Hek(zi)µ(dξ1, dξ2, · · · )ek

=

∫

RN

∞∑

k=1

Pmk
(ξk)

ξk
λk
ek(zi)µ(dξ1, dξ2, · · · )ek

=
∞∑

k=1

ek
λk

∫

R

Pmk
(ξk)ξk(zi)µ(dξk)

truncating the above expression we have

uzim(0) ≈
M∑

k=1

ek
λk

∫

R

Pmk
(ξk)ξk(zi)µ(dξk) (4.19)

Setting the equation (4.19) for each element from uzim as uzimj
(0) = uj(0), 1 ≤ j ≤M

and by (4.16) evaluated for t = 0, then the initial condition can be written as




u1(0)
u2(0)

...
uM−1(0)
uM (0)




=
(
V 1 V 2 . . . VM−1 VM

)




c1
c2
...

cM−1

cM




and the constants cj are calculated as




c1
c2
...

cM−1

cM




=
(
V 1 V 2 . . . VM−1 VM

)−1




u1(0)
u2(0)

...
uM−1(0)
uM (0)



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4.2.3 Numerical Experiments

Now, we will proceed to describe the steps necessary to implement the method based
on the above:

1. Set the intervals to consider, [0, 1] for physical space and [0, tf ] for time with
tf fixed, and give the functional u0 that interacting with the initial condition
x(ξ) . It is also necessary to choose the values of N,M,N1, and another for
the parameter α.

2. We proceed to calculate the points ξi ∈ [0, 1] for i = 0, 1, . . . , p with p positive
entire as

ξi = ξ0 + i∆ξ, i = 0, 1, . . . , p

and to obtain the points tj ∈ [t0, tf ], we define the sequence j = 0, 1, . . . , T ,
for some positive entire T , and calculate the following

tj = t0 + j∆t, ∆t =
tf
T

3. Calculate the values of J N,M to obtain the matrix C̄n,m. Setting the values
λi to proceed with the calculation of the eigenvalues ηi and their respective
eigenvectors Vi of the matrix A.

4. Using the functional u0 to calculate the constants ck for each k = 1, . . . ,M ,
and then obtain the system solution given by (4.16).

5. Finally, the approximation obtained is evaluated using the equation given by

uM (x, t) =

M∑

k=1

uk(t)Hk(x).

The following simulations that will be shown were performed using a discretiza-
tion of 2048 points in the spatial variable ξ over the interval [0, 1], and 1024 points
in the variable time t over the interval [0, 10]. In addition, the values of the param-
eters N = 5, M = 11, and α = 1.0× 10−2 were considered. With this information,
the solutions obtained were calculated using the following initial condition and its
truncated Chebysheb expansion given by

x(ξ) = sin(πξ), y(ξ) =
N∑

k=0

ckTk(ξ),

This numerical experiment consists of illustrating an interesting result given in
[35], which tells us that the solutions obtained from two close initial conditions also
remain close. This behavior allows characterizing what is known as the stability of
the approximation, and it is described by means of continuity with respect to the
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initial conditions of the numerical approximations of the equation (4.1).

To understand this better, let us denote by Ψx
t the solution of (4.1) obtained by

u(x, t) = E [ϕ(Xx
t )] .

where ϕ : H → R is Lipschitz and Xx
t is the solution to (4.2) with initial conditions

X0 = x ∈ H. So, as before, its expansion is given by

Ψx
t =

∑

n∈J
un(t)Hn(x), x ∈ H, t ∈ [0, T ].

Therefore, following our reference, the above is summarized as follows: Given
two different initial conditions x, y ∈ H, then we have the following estimate

‖Ψx
t −Ψy

t ‖2(L2(H,µ))2
≤ exp(Ct)

∫

H×H
‖x− y‖2Hµ(dx)µ(dy) + f(t)‖x− y‖H,

for some C finite and f(t) is given by

f(t) =
∑

n∈J
[uyn(t)]

2 +

∫

H
E
2 [ϕ(Xy

t )]µ(dy).

From the above, we can see that if ‖x−y‖H ≤ δ, so we have to ‖Ψx
t −Ψy

t ‖ ≤ G(t)δ.
As we have already mentioned, this continuity defines a type of stability for approx-
imations, which is of utmost importance in this field since characterizations of this
type are still under construction and are essential for the analysis of a numerical
method.

This behavior is shown in the following figures, which were obtained using codes
that were created following the previous steps, and which can be found in https:

//github.com/alanmatzumiya/Paper.git. In figure 4.1 it shows us the two initial
conditions for which the equation (4.1) will be solved by associating it with (1.14),
and in figure 4.2 we can see that the solutions keep the distance. Finally, the figure
4.3 shows the distances for each instant of time t, showing that they are actually
getting closer as time passes.
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Figure 4.1: Initial condition for (4.11) and its approximation.

Figure 4.2: Numerical solutions for (4.11) with initial conditions x(ξ) and y(ξ).
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Figure 4.3: Distance between the numerical solutions for equation (4.11) with initial
conditions x(ξ), and y(ξ).
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Chapter 5

Discussion and Conclusions

With what has been developed throughout this thesis work, it has given us a sat-
isfactory understanding of the knowledge necessary to apply spectral methods in
solving initial value problems of nonlinear partial differential equations, which with
practice it will be possible to acquire the ability to study and attack other more
complex problems.

The practice that we have obtained when developing Chapter 3 with the help of
the tools examined in Chapter 2, can be useful to construct and study some other
spectral method using another family of polynomials that allows us to approximate
more precisely a function, and to construct practical methods for its implementation
solving this same problem or another one of interest. Although, as expected based
on theory, we were able to obtain good approximations using Fourier methods to
solve linear problems. But, the situation was different when we considered the non-
linear problem since it was not possible to obtain the solutions directly, forcing us to
develop more carefully the numerical methods that finally gave us a good numerical
approximation and with practical mathematical expressions for its implementation.

However, we noted that very small steps in time were required to ensure that the
methods worked correctly, which greatly increased the computation time, but this
was due to the presence of the aliasing error caused by the nonlinear term, which
manifested itself unfavorably with small values of α, and they should be handled
more carefully, possibly considering another class of polynomials. Even so, we were
able to satisfactorily detect the problems that can arise when using these tools, and
it is interesting to delve into this with the help of the appropriate tools that allow
us to characterize and know the convergence of these methods.

Regarding the spectral method that we developed in the Chapter 4, the problem
that arises is due to the number of calculations that are necessary to obtain the nu-
merical approximations, but nevertheless, the implementation is easy to understand
and can be studied with more detail to propose a more efficient and less expensive
algorithm to calculate, mainly attacking the calculation of the integrals involved in
the process. For this type of problem, it is worth investigating an implementation
that allows you to write parallel code in some programming language to optimize
memory and computation times.
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Discussion and Conclusions

Even so, it was possible to successfully carry out some numerical experiments
that allowed us to observe a theoretical result that characterized the stability of this
method, and perhaps could allow us to investigate other characteristics of interest,
such as its convergence. Thanks to the practice developed in this chapter we have
acquired the ability to implement a spectral method to carry out numerical studies
that may be useful for its analysis, which could also be interesting to implement
these same techniques in other problems that are considered important.

Therefore, we can conclude that spectral methods are a good option to study
partial differential equations, either deterministic or stochastic since in addition to
giving us the possibility of obtaining good precision in their approximations provided
they are implemented correctly, they are also an excellent alternative to investigate
the nature of these problems, be they physical or mathematical, opening different
paths, such as some of those already mentioned, that may be interesting for devel-
oping future research.

74



Appendix A

Elements of Probability

A.1 Basic Definitions

Definition A.1.1. A probability measure P on a measurable space (Ω,F) is a
function from F to [0, 1] such that

• P(∅) = 0, and P(Ω) = 1.

• If {An}n≥1 ∈ F and Ai ∩Aj 6= ∅ if i 6= j, then P(∪∞
n=1An) =

∑∞
n=1 P(An).

A σ-algebra on a set X is a collection of subsets of X that includes the empty subset
and is closed under complement and under countable unions. Denote σ(D) = ∩{H :
H is a σ-algebra of Ω, D ⊆ H}. We call σ(D) a σ-algebra generated by D.

Definition A.1.2. A triple (Ω,F ,P) is called a probability space if

• Ω is a sample space which is a collection of all samples.

• F is a σ-algebra on Ω.

• P is a probability measure on (Ω,F).

On a given probability space (Ω,F ,P)(Ω = R), if a cumulative distribution function
of a random variable X is normal, i.e.,

P(X < x) =

∫ x

−∞

1

σ
√
2π
e−

(y−µ)2

2σ2 dy, σ > 0, (A.1)

then the random variable X is called a Gaussian (normal) random variable on the
probability space (Ω,F ,P). HereX is completely characterized by its mean µ and its
standard deviation σ. We denote X ∼ N (µ, σ2). The probability density function
of X is

p(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 .

When µ = 0 and σ = 1, we call X a standard Gaussian (normal) random variable.

Definition A.1.3. A probability space (Ω,F ,P) is said to be a complete probability
space if for all B ∈ F with P(B) = 0 and all A ⊆ B one has A ∈ F .
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Definition A.1.4. If (Ω,F ,P) is a given probability space then a function Y : Ω →
R
n is called F-measurable if Y −1(U) = {w ∈ Ω : Y (w) ∈ U} ∈ F holds for all open

sets U ∈ R
n. If X : Ω → R

n is a function, then σ(X) is the smallest σ-algebra on Ω
containing all the sets X−1(U) for all open sets U in R

n.

Definition A.1.5. Suppose that (Ω,F ,P) is a given complete probability space. A
random variable X is an F-measurable function X : Ω → R

n.

Its well known that every random variable induces a probability measure µX (dis-
tribution of X) on Rn given by

µX(B) = P(X−1(B)).

If
∫
Ω |X(w)|dP(w) <∞, the expectation of X w.r.t. P is defined by

E[X] =

∫

Ω
X(w)dP(w) =

∫

Rn

xdµX(x).

Also the p-th moment of X is defined as (if the integrals are well defined)

E[Xp] =

∫

Ω
XpdP(w) =

∫

Rn

xpdµX(x).

The centered moments are defined by E [|X − E[X]|], p = 1, 2, . . . ,. When p = 2,
the centered moment is also called the variance.

Definition A.1.6. Let (Ω,F ,P) be a probability space and let T ⊆ R be time. A
collection of random variables Xt , t ∈ T with values in R is called a stochastic pro-
cess. If time is an interval, R+ or R, it is called a stochastic process with continuous
time. For any fixed w ∈ Ω, one can regard Xt(w) as a function of t (called a sample
function of the stochastic process).

On a probability space (Ω,F ,P), a filtration refers to an increasing sequence of
σ-algebras:

F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · .

A natural filtration (w.r.t. X) is the smallest σ-algebra that contains informa-
tion of X. It is generated by X and FX

n = σ(X1, . . . , Xn) with FX
0 = {∅,Ω}. If

limn→∞Fn ⊆ F , then we call (Ω,F , {Fn}n≥1,P) a filtered probability space. A
stochastic process {Xn} on a filtered probability space is an adapted process if Xn

is Fn-measurable for each n.

Definition A.1.7. A family of sub-σ-algebras Ft ⊆ F indexed by t ∈ [0,∞) is
called a filtration if it is increasing Fs ⊆ Ft when 0 ≤ s ≤ t <∞.

Definition A.1.8. A collection of random variables is called a Gaussian process,
if the joint distribution of any finite number of its members is Gaussian. In other
words, a Gaussian process is a R

d-valued stochastic process with continuous time (or
with index) t such that (X(t0), X(t1), . . . , X(tn))

T is a (n+1)-dimensional Gaussian
random vector for any 0 ≤ t0 < t1 < · · · < tn. The Gaussian process is denoted as
X = {X(t)}t∈I where I is a set of indexes.

76



A.1 Basic Definitions Elements of Probability

Definition A.1.9. A continuous time stochastic process W (t) is called a standard
Brownian motion if

• W (t) is almost surely continuous in t, and W (0) = 0.

• W (t) has independent incrementsW (ti+1)−W (ti) for all tn ≥ 0, i = 0, 1, . . . , n.

• W (t)−W (s) ∼ N (0, t− s), i.e., obeys the normal distribution with mean zero
and variance t− s.

Set x ∈ D ⊂ R
d, we define infinite dimensional Gaussian processes as follows

WQ(x, t) =

∞∑

j=1

√
qjej(x)Wj(t),

where Wj(t) are mutually independent Brownian motions. Here qj ≥ 0, j ∈ N
d

and {ej(x)} is an orthonormal basis in L2(D). The following expansion is usually
considered in literature:

ẆQ(x, t) =
∞∑

j=1

√
qjej(x)Ẇj(t).

where Ẇj(t) =
d
dtW , is formally the first-order derivative of Wj(t) in time. When

qj = 1 for all j, we have a space-time white noise, and if
∑∞

j=1
√
qj is called a Q-

Wiener process.

The Brownian motion and white noise can also be defined in terms of orthogonal
expansions. Suppose that {ej(t)}j≥1 is a complete orthonormal system in L2([0, T ]),
then the Brownian motion W (t) can be defined by

W (t) =
∞∑

j=1

βj

∫ t

0
ej(s)ds, t ∈ [0, T ], (A.2)

where βj are mutually independent standard Gaussian random variables for each j,
and it can be also checked that is indeed a standard Brownian motion. Correspond-
ingly, the white noise is defined by

Ẇ (t) =
∞∑

j=1

βjej(t), t ∈ [0, T ]. (A.3)

Definition A.1.10. Let {ej}j≥1 be a complete orthonormal system of a separable
Hilbert space H, and T ∈ R

+, and {βj(t)}j≥1 be an independent and identically
distributed sequence of Brownian Motions. Then a cylindrical Wiener process W in
H is given by

W (t) =
∞∑

j=1

βjej(t)
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A.2 Some Important Results in Probability Spaces

It is well known that the Hermite Polynomials {Pk()̇}k∈N with P0 = 1 is a complete

orthonormal system for L2(R, µ1(dx)) with µ1(dx) =
1√
2 pi

e−
x2

2 dx, which are defined

by

Pk(x) =
(−1)k

(k!)1/2
e

x2

2
dk

dxk
e−

x2

2 , x ∈ R (A.4)

A functional Φ : H −→ R, is said to be a smooth simple functional (or a cylinder
functional) if there exists a C∞-function ϕ on R

n and n-continuous linear functional
l1, · · · , ln on H such that for h ∈ H

Φ(h) = φ(h1, · · · , hn) where hi = li(h), i = 1, · · · , n.

Let H = L2(H, µ) denote the Hilbert space of Borel measurable functionals on
the probability space with inner product

〈Φ,Ψ〉H =

∫

H
Φ(v)Ψ(v)µ(dx), Φ,Ψ ∈ H, (A.5)

and the norm ‖Φ‖H = 〈Φ,Φ〉1/2
H

. In H we choose a basis system {ϕk} such that
ϕk ∈ H.

Let Λ an operator such that Tr < +∞. We will denote as H0 the Hilbert
subspace of H with inner product 〈g, h〉0 = 〈Λ1/2g,Λ1/2h〉H for g, h ∈ Λ1/2H, which
is the completion of Λ1/2H with respect to the norm ‖g‖0 = 〈g, g〉1/2, and also is
dense in H. Then, by using the above can be defined The Hermite functional as
follows

Hn(h) =
∞∏

i=1

Pni
(li(h)), h ∈ H0, n ∈ J (A.6)

with
li(h) =

〈
h,Λ−1/2ϕi

〉
H
, i = 1, 2 · · ·

and the set J is given by

J = {α = (αi, i ≥ 1)|αi ∈ N ∪ 0, |α| :=
∞∑

i=0

αi <∞} (A.7)

Lemma A.1. For h ∈ H let li(h) = (h,Λ−1/2ϕi)H, i = 1, 2, · · · . Then the set
{Hn} of all Hermite polynomials on H forms a complete orthonormal system for H.
Hence the set of all functionals are dense in H. Moreover, we have the direct sum
decomposition:

H =

∞⊕

j=0

Kj ,

where Kj is the subspace of H spanned by {Hn : |n| = j}. This result can be found
in [24].
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Lemma A.2. Let Hn(h) be a Hermite polynomial functional given by (A.6), and
suppose that the operator −A have eigenfunctions ek with eigenvalues λk. Then the
operator given in (4.5) satisfies the following

LHn(h) = −λnHn(h) (A.8)

for any n ∈ J and Hn ∈ H, where

λn =
∞∑

k=1

nkλk
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