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Introduction

Differential equations are used to model the dynamics of many real systems. These
equations are, in the majority, deterministic differential equations (ordinary or par-
tial differential equations), where the main hypothesis on the model is that it only
depends on relation between the state variables and the initial or boundary condi-
tions. Even though, not all of the systems can be studied using such kind of models
because they exhibit random fluctuations that have very important effects in their
dynamics.

Differential equations that include random fluctuations are known as stochastic
differential equations (SDE) and have been used to model systems in many fields
as economics, finance and biology, among others. For instance, in biology, SDE are
used to study epidemics [9], neuronal circuits [14], fishing models [2] and cell biology
[5]. Likewise, SDE have been used to describe semiconductor manufacturing, for
designing of chemical reactors and the sintering processes (production of ceramics)
[10].

Most of these models are based in one of two stochastic calculus: Itô’s calculus or
Stratonovich’s calculus. These are not the unique stochastic calculus [17], but they
are the most popular. Some authors have made comparison between these stochastic
calculus. For instance, Hodyss et al.[11] simulated atmospheric phenomenas using
both calculus, Berkov and Gorn [1] showed that they lead to the same results in
thermodynamics, Sancho [19] proved that Stratonovich calculus (slightly modified)
is better to model colloidal particles, and Smythe et al.[20] showed the differences
between those models with digital simulations.

Thus, one can wonder,

Which stochastic calculus should be used in mathematical models: Itô or
Stratonovich?

Does it depend on the area of study?

In this thesis, we present the answer to this dilemma given by Braumann in [4]
and [3] for the stochastic version of the general Malthusian population model given
by

dN (t) = G (N (t)) dt+ Σ (N (t)) dB (t) , N (0) = N0 > 0 (1)

where N (t) is the size of the population at time t, G (x) is the average growth rate of
the population, Σ (x) the random fluctuations (sometimes due to the environment),
and N0 the initial population. It is important to note that the analysis of the model
(1) will be realized in the scalar case.

Braumann [4] propose that the average growth rate is different when the system
is studied by this stochastic calculus. With the Itô calculus, the so-called average
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growth rate is the arithmetic growth rate whereas with the Stratonovich calculus is
the geometric growth rate.

Scheme of the thesis

This thesis is divided in 4 chapters. Chapter one presents some probability back-
ground, introduces the Brownian motion and discusses some of its sample-path prop-
erties. Next, Chapter two briefly introduces the two different integrals with respect
to the Brownian motion in which we are interested, namely, the Itô integral and the
Stratonovich integral.

Chapter three presents the theory of stochastic differential equation for popu-
lation models in the scalar case. Some of the famous population growth models,
like Verhulst’s or Gompertz, do not satisfy the Itô conditions , so a existence and
uniqueness theorem under different set of conditions is proved. The second part of
this chapter consists to show the Feller criteria for explosions. The third part is
dedicated to develop properties of the solution of a SDE, likewise the Markov prop-
erty and diffusion characterization. Finally, this chapter ends with the boundaries
classification of the states of the process.

In Chapter four, the Itô-Stratonovich dilemma is discussed for the Malthusian
population model given in (1). The resolution of this dilemma is presented for the
density-independent and the density-dependent cases. And finally, the dilemma is
presented for the density-dependent harvesting case.



Chapter 1

Preliminaries

Introduction

This chapter is used to introduce the notation of the thesis. Also, the Brownian
motion is presented and its relation between the Riemann-Stieltjes integral is exhib-
ited.

1.1 Basic probability concepts and notation

Let (Ω,F,P) be a probability space. The space Lp (Ω,F,P) consists of all random
variables X such that E [|X|p] <∞. In particular, L1 (Ω,F,P) is the set of integrable
random variables.

A sequence of random variables {Xn}∞n=1 converges almost surely to the random
variable (r.v.) X if there exists N ∈ F with P [N ] = 0 such that

Xn (ω)→ X (ω) ∀ω ∈ Ω−N.

A sequence of random variables {Xn}∞n=1 converges in Lp to the r.v. X if, for
each ε > 0 there exists N ∈ N such that

E [|Xn −X|p] < ε for n ≥ N

If p = 2, this type of converge is known as mean-square convergence, and its denoted
as ms-lim.

A sequence of random variables {Xn}∞n=1 converges in probability to the r.v. X
if

lim
n→∞

P [|Xn −X| > ε] = 0 ∀ ε > 0.

Remark 1. The relation between these types of convergence is presented as follows:

(a) if {Xn}∞n=1 converges to X almost surely, then {Xn}∞n=1 converges to X in
probability.

(b) if {Xn}∞n=1 converges to X in Lp, then {Xn}∞n=1 converges to X in probability.

(c) if {Xn}∞n=1 converges to X in probability, there exists a subsequence {Xnk}∞k=1

that converges to X almost surely.
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Let T ⊆ R be either [a, b], with 0 ≤ a < b, or [0,∞). A filtration {Ft}t∈T is a
family of sub-σ-algebras of F such that Fs ⊆ Ft for all indexes s ≤ t that belong to
the set T . The collection (Ω,F, {Ft}t∈T ,P) is called filtered space.

A filtration {Ft}t∈T is said to be complete if each sub-σ-algebra Ft contains all
the P -null subsets. It is said to be right-continuous if

Ft =
⋂
s>t
s∈T

Fs ∀t ∈ T.

If the filtration {Ft}t∈T is complete and right-continuous, then it is said that satisfies
the usual conditions.

A stochastic process X (t) , t ∈ T is a collection of random variables defined on
some probability space (Ω,F,P). For each ω ∈ Ω, the mapping

t→ X (t, ω) , t ∈ T,

is called trajectory or sample-path of the stochastic process. It is said that the
stochastic process X (t) , t ∈ T is continuous if almost all trajectories are continuous.
Moreover, the process is said to be adapted to a filtration {Ft}t∈T if X (t) is Ft-
measurable for each t ∈ T . Clearly, X (t) , t ∈ T is adapted to the so-called natural
filtration given by Ft = σ (Xs|s ≤ t), t ∈ T .

A stochastic process M (t) , t ∈ T is a martingale with respect to a filtration
{Ft}t∈T if

(i) M (t) , t ∈ T , is adapted to {Ft}t∈T ,

(ii) M (t) is integrable for all t ∈ T , and

(iii) E
[
M (t)

∣∣∣Fs] = M (s) ∀s ≤ t a.s.

In the case we hold ≤ (≥) indeed the equality in (iii), we called sub-martingale
(super-martingale).

Recall that a partition π of an interval T = [a, b] is a finite collection of points
{t0, t1, . . . , tn} such that

t0 = a < t1 < · · · < tn−1 < tn = b.

Let P (T ) be the set of all finite partitions of T . The norm (or mesh) of a partition
π is defined as

‖ π ‖:= max
1≤j≤n

|tj − tj−1|.

The total variation of a stochastic process X (t) , t ∈ T is defined as

VT (X) := sup
π∈P(T )

n∑
k=1

|X (tk)−X (tk−1) |,

and the quadratic variation as

[X]T := P-lim
‖π‖→0

n∑
k=1

|X (tk)−X (tk−1) |2

where P-lim means limit in probability.
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1.2 Brownian motion

Definition 1.1. A stochastic process B (t) , t ∈ [0,∞) with states in R is called a
standard Brownian motion if it satisfies the next assumptions:

(a) P [ω ∈ Ω|B (0, ω) = 0] = 1;

(b) for any 0 ≤ s < t, the random variable B (t)−B (s) is normally distributed with
mean 0 and variance t− s. In other words,

P [a ≤ B (t)−B (s) ≤ b] =
1√

2π (t− s)

∫ b

a
e
− x2

2(t−s)dx; (1.1)

(c) the process has independent increments: for any 0 ≤ t1 < t2 < · · · < tn, the
random variables B (t1), B (t2)−B (t1),· · · , B (tn)−B (tn−1) are independent;

(d) Almost all sample-paths of B (·, ω) are continuous functions, i.e.,

P [ω ∈ Ω|B (·, ω) is continuous ] = 1. (1.2)

Figure 1.1: A Brownian motion sample-path.

The next remark collects some basic properties of brownian motion. The proofs
can be found in [15, 21].

Remark 2. 1. B (t) ∼ N (0, t) ∀t ≥ 0

2. E
[
|B (t)−B (s) |2

]
= t− s,

3. E
[
|B (t)−B (s) |4

]
= 3|t− s|2,

4. for any s, t ≥ 0, E [B (t)B (s)] = min{s, t}.

5. almost surely, B (t, ω) is an uniformly continuous function on finite intervals.

Let {Bt}t∈[a,b] be the natural filtration of the Brownian motion B (t) , t ∈ [a, b].

Proposition 1.2. The stochastic processes B (t) and B (t)2 − t, t ∈ [a, b], are mar-
tingales with respect to the filtration {Bt}t∈[a,b].
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Proof. By the definition of {Bt}t∈[a,b], it follows that B (t) and B (t)2 − t are Bt-

measurables for each t ∈ [a, b]. Obviously, B (t) and B (t)2− t are integrable for each
t.

Let consider a ≤ s ≤ t ≤ b. Because of the independent increments property of
the Brownian motion B (t) a ≤ t ≤ b, B (t) − B (s) is independent of Bs, implying
that

E
[
B (t)

∣∣∣Bs

]
= E

[
B (t)−B (s)

∣∣∣Bs

]
+ E

[
B (s)

∣∣∣Bs

]
= E [B (t)−B (s)] +B (s)

= B (s) .

With this, is evidently that B (t) , t ∈ [a, b] is a martingale with respect to {Bt}t∈[a,b].

On the other hand, [B (t)−B (s)]2 is independent to Bs and,

E
[
B (t)2

∣∣∣Bs

]
= E

[
B (s)2 + 2B (s) [B (t)−B (s)] + [B (t)−B (s)]2

∣∣∣Bs

]
= E

[
B (s)2

∣∣∣Bs

]
+ 2E

[
B (s) [B (t)−B (s)]

∣∣∣Bs

]
+E

[
[B (t)−B (s)]2

∣∣∣Bs

]
= B (s)2 + 2B (s)E

[
B (t)−B (s)

∣∣∣Bs

]
+ E

[
[B (t)−B (s)]2

]
= B (s)2 + t− s.

Therefore, B (t)2 − t, t ∈ [a, b], is also a martingale with respect to {Bt}t∈[a,b].

Lemma 1.3. Let B (t) , t ∈ [a, b] be a Brownian motion. Then,

ms-lim
‖π‖→0

n∑
i=1

|B (ti)−B (ti−1) |2 = b− a.

Proof. Let π = {t0, t1, . . . , tn} be a partition of [a, b], let consider the random variable

Xn =

n∑
i=1

|B (ti)−B (ti−1) |2 − (b− a) ,

Note that

X2
n =

[
n∑
i=1

|B (ti)−B (ti−1) |2 − (b− a)

]2

=
{ n∑
i=1

[
|B (ti)−B (ti−1) |2 − (ti − ti−1)

] }2

=
n∑
i=1

V 2
i + 2

∑
i<j

ViVj ,
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where Vi = |B (ti)−B (ti−1) |2 − (ti − ti−1). Then,

E [Vi] = E
[
|B (ti)−B (ti−1) |2

]
− (ti − ti−1)

= (ti − ti−1)− (ti − ti−1) = 0.

and

E
[
V 2
i

]
= E

[
|B (ti)−B (ti−1) |4

]
− 2 (ti − ti−1)E

[
|B (ti)−B (ti−1) |2

]
+ (ti − ti−1)2

= 3 (ti − ti−1)2 − 2 (ti − ti−1)2 + (ti − ti−1)2

= 2 (ti − ti−1)2 .

Now, let Gi := σ (Vj | j ≤ i) be the σ-algebra generated by the random variables Vj
for j ≤ i. Then,

E [ViVj ] = E
[
E
[
ViVj

∣∣∣Gi]] , i < j

= E
[
ViE

[
Vj

∣∣∣Gi]] , i < j

= E [ViE [Vj ]] = 0.

Thus,

E
[
X2
n

]
= E

[
n∑
i=1

|B (ti)−B (ti−1) |2 − (b− a)

]2

=
n∑
i=1

E
[
V 2
i

]
+ 2

∑
i<j

E [ViVj ]

= 2
n∑
i=1

(ti − ti−1)2

≤ 2 ‖ π ‖
n∑
i=1

(ti − ti−1)

= 2 ‖ π ‖ (b− a) ,

which implies that

lim
‖π‖→0

E

[∑
π

|∆B (t) |2 − (b− a)

]2

= 0.

Corollary 1.4. The quadratic variation of Brownian motion B (t) , t ∈ [a, b] is b−a,
that is,

[B][a,b] = P-lim
‖π‖→0

n∑
i=1

|B (ti)−B (ti−1) |2 = b− a.
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Proof. By Remark 1(b), convergence in Lp implies convergence in probability. Then,
Lemma 1.3 implies that

[B][a,b] = b− a.

Theorem 1.5. Almost surely, the sample-paths of Brownian motion have unbounded
total variation on any finite interval [a, b].

Proof. Suppose that the statement is not true, that is, there exists Ω̃ ⊆ Ω such that

P
(

Ω̃
)
> 0 and

V[a,b] (B) (ω) <∞∀ω ∈ Ω̃. (1.3)

Consider Ω? = {ω ∈ Ω|B (·, ω) is continuous } and ω ∈ Ω̃ ∩ Ω?. As B (t, ω) is
uniformly continuous P-a.s. in [a, b], for each ε > 0 there exists δ > 0 such that if
s, t ∈ [a, b] then |t− s| < δ implies

|B (t, ω)−B (s, ω) | < ε

1 + V[a,b] (B) (ω)
.

Let π be a partition of [a, b] such that ‖ π ‖< δ. Then,

max
π
|∆B| (ω) := max

1≤i≤n
|B (ti, ω)−B (ti−1, ω) | < ε

1 + V[a,b] (B) (ω)
. (1.4)

On the other hand,∑
π

|∆B|2 (ω) :=
n∑
i=1

|B (ti, ω)−B (ti−1, ω) |2

≤
[

max
1≤i≤n

|B (ti, ω)−B (ti−1, ω) |
] n∑
i=1

|B (ti, ω)−B (ti−1, ω) |

≤ max
π
|∆B| (ω)V[a,b] (B) (ω)

≤
V[a,b] (B) (ω)

1 + V[a,b] (B) (ω)
ε

≤ ε,

which implies that

lim
‖π‖→0

∑
π

|∆B|2 (ω) IΩ̃ = 0, (1.5)

The latter equality leaves that

P-lim
‖π‖→0

∑
π

|∆B|2 (ω) IΩ̃ = 0, (1.6)

contradicting Corollary 1.4 which states that

P-lim
‖π‖→0

∑
π

|∆B|2 (ω) IΩ̃ = b− a. (1.7)

Therefore, the initial assumption is not true. Hence,

V[a,b] (B) =∞ a.s. (1.8)
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Relation between the Riemann-Stieltjes integral

Let C ([a, b]) be the class of continuous functions f (t) defined on [a, b] with values
on R. For each f, g ∈ C ([a, b]) and π ∈ P, define U (f, g, π) and L (f, g, π) as

U (f, g, π) =
n∑
i=1

f (ti) (g (ti)− g (ti−1)) ,

L (f, g, π) =
n∑
i=1

f (ti−1) (g (ti)− g (ti−1)) .

A function g ∈ C ([a, b]) is called a Riemann-Stieltjes integrator if, for each f ∈
C ([a, b]),

lim
‖π‖→0

|U (f, g, π)− L (f, g, π) | = 0, (1.9)

and denote this class of functions by I. Next, we present a characterization of the
elements of I in terms of the total variation. The proof can be found in [6].

Proposition 1.6. If g ∈ I, then its total variation is finite, that is,

V[a,b] (g) := sup
π∈P([a,b])

n∑
k=1

|g (tk)− g (tk−1) | <∞.

Note that this result can be stated equivalently as follows: if V[a,b] (g) = ∞ for
any function, then g /∈ I.

Since the sample-paths of the Brownian motion B (t) , t ∈ [a, b] are continuous
a.s., Theorem 1.5 and Proposition 1.6 show that the sample-paths B (·, ω) /∈ I almost
surely and can not be used as Riemann-Stieltjes integrators.

Therefore, there exists (at least) a stochastic process Y (t) , t ∈ [a, b] such that
contradicts the definition of Riemann-Stieltjes integrator for g (t) = B (t). One of
these stochastic processes is the Brownian motion itself.

Proposition 1.7. Let B (t) , t ∈ [a, b] be a Brownian motion. Then, there exists a
sequence of partitions {πn}∞n=1 of [a, b] such that ‖ πn ‖≤ 1

n and

lim
n→∞

|U (B,B, πn)− L (B,B, πn) | = b− a, almost surely.

Proof. First observe that

L (B,B, π) =

n∑
i=1

B (ti−1) [B (ti)−B (ti−1)] ,

U (B,B, π) =

n∑
i=1

B (ti) [B (ti)−B (ti−1)] .
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Then,

U (B,B, π)− L (B,B, π) =

n∑
i=1

[B (ti)−B (ti−1)]2
L2

−→ b− a,

U (B,B, π) + L (B,B, π) =

n∑
i=1

[
B (ti)

2 −B (ti−1)2
]

= b2 − a2,

and Corollary 1.4 implies that,

P-lim
‖π‖→0

∣∣∣U (B,B, π)− L (B,B, π)
∣∣∣ = b− a.

Let {πn}∞n=1 ⊂ P be a sequence of partitions such that ‖ πn ‖≤ 1
n . Using the

Chebyshev inequality and straightforward calculus, we have that

P
[∣∣∣U (B,B, πn)− L (B,B, πn)− (b− a)

∣∣∣ > ε
]
≤

E
[∣∣∣U (B,B, πn)− L (B,B, πn)− (b− a)

∣∣∣2]
ε2

≤ 2 (b− a) ‖ πn ‖
ε2

≤ 2 (b− a)

ε2n

Thus,

P-lim
n→∞

∣∣∣U (B,B, πn)− L (B,B, πn)
∣∣∣ = b− a, .

Finally, Remark 1(c) implies the existence of a subsequence {πnk}∞k=1 of {πn}∞n=1

such that
U (B,B, πnk)− L (B,B, πnk)→ b− a almost surely.



Chapter 2

Stochastic Integrals

Introduction

It was shown in Chapter 1 that the sample-path of Brownian motion can not be used
as Riemann-Stieltjes integrators. Thus, in order to define the integral of a stochastic
process f (t) , t ∈ [a, b], with respect to the Brownian motion, say,∫ b

a
f (t, ω) dB (t, ω) (2.1)

it is necessary to specify the time points in the partition at which the process is
evaluated and the type of convergence used for computing the limit of the Riemann-
Stieltjes sums.

In this chapter, we discuss first how such an integral can be defined and take as
starting point the computation of the quantity

I (B (t) , t ∈ [a, b], α) := ms-lim
‖π‖→0

n∑
j=1

B ((1− α) tj−1 + αtj) [B (tj)−B (tj−1)] ,

where α ∈ [0, 1]. The result of this computation will show light on how to choose α
depending on the properties we want the stochastic integral satisfies.

Later, section 2.2 are dedicated to construct the Itô integral and the Itô calculus.
Moreover, it is also shown, under certain conditions, that the Itô integral can be
obtained as the limit of Riemann-Stieltjes sums in the mean-square or in probability
convergence.

Finally, section 2.3 shows the construction of the Stratonovich integral using the
Itô integral and some of its properties.

2.1 The importance of α.

In this section, the importance of the choose of α is explained by the computation
of I (B (t) , t ∈ [a, b], α).

Consider a partition πn of [a, b] with ti− ti−1 = b−a
n , τj = (1− α) tj−1 +αtj and

define the auxiliary random variables:

• ∆B1−α,j = B (τj)−B (tj−1) ∼ N (0, τj − tj−1),

11
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• ∆Bα,j = B (tj)−B (τj) ∼ N (0, tj − τj),

• ∆∆B2
j = ∆B2

1−α,j −∆B2
α,j .

The next two lemmas show some properties of these random variables, which are
used to show the mean-square convergence. Lemma 2.1 gives the first and second
moment of the random variable ∆∆B2

j .

Lemma 2.1. The Brownian motion B (t) , t ∈ [a, b] satisfies the equalities

E
[
∆∆B2

j

]
= (2α− 1) (tj − tj−1)

E
[(

∆∆B2
j

)2]
=

{
2
[
α2 + (1− α)2

]
+ (2α− 1)2

}
(tj − tj−1)2 .

Proof. The first equality follows from direct computations:

E
[
∆∆B2

j

]
= E

[
∆B2

1−α,j −∆B2
α,j

]
= E

[
∆B2

1−α,j
]
− E

[
∆B2

α,j

]
= (τj − tj−1)− (tj − τj)
= (2α− 1) (tj − tj−1) .

To prove the second equality, note that

E
[(

∆∆B2
j

)2]
= E

[(
∆B2

1−α,j −∆B2
α,j

)2]
= E

[
∆B4

1−α,j − 2∆B2
1−α,j∆B

2
α,j + ∆B4

α,j

]
= E

[
∆B4

1−α,j
]
− 2E

[
∆B2

1−α,j∆B
2
α,j

]
+ E

[
∆B4

α,j

]
= 3 (τj − tj−1)2 − 2E

[
∆B2

1−α,j
]
E
[
∆B2

α,j

]
+ 3 (tj − τj)2

= 3 (τj − tj−1)2 − 2 (τj − tj−1) (tj − τj) + 3 (tj − τj)2

= 3α2 (tj − tj−1)2 − 2α (1− α) (tj − tj−1)2

+3 (1− α)2 (tj − tj−1)2

=
{

2
[
α2 + (1− α)2

]
+ (2α− 1)2

}
(tj − tj−1)2 .

Lemma 2.2. The random variables Xn :=
∑n

j=1 ∆∆B2
j , n = 1, 2, . . ., satisfies the

equalities

E [Xn] = (2α− 1) (b− a) (2.2a)

E
[
X2
n

]
= (2α− 1)2 (b− a)2 +

2
[
α2 + (1− α)2

]
(b− a)2

n
(2.2b)
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Proof. First, the proof of (2.2a) is showed by noting that

E [Xn] = E

 n∑
j=1

∆∆B2
j

 =

n∑
j=1

E
[
∆∆B2

j

]
=

n∑
j=1

(2α− 1) (tj − tj−1)

= (2α− 1)

n∑
j=1

(tj − tj−1)

= (2α− 1) (b− a) .

The proof of (2.2b) is as follows

E
[
X2
n

]
= E

 n∑
j=1

(
∆∆B2

j

)2
= E

 n∑
j=1

(
∆∆B2

j

)2
+ 2

n∑
1=i<j

∆∆B2
j∆∆B2

i


=

n∑
j=1

E
[(

∆∆B2
j

)2]
+ 2

n∑
1=i<j

E
[
∆∆B2

j∆∆B2
i

]
=

n∑
j=1

{
2
[
α2 + (1− α)2

]
+ (2α− 1)2

}
(tj − tj−1)2

+2

n∑
1=i<j

E
[
∆∆B2

j

]
E
[
∆∆B2

i

]
=

n∑
j=1

{
2
[
α2 + (1− α)2

]
+ (2α− 1)2

}
(tj − tj−1)2

+2 (2α− 1)2
n∑

1=i<j

(tj − tj−1) (ti − ti−1)

= 2
[
α2 + (1− α)2

] n∑
j=1

(tj − tj−1)2 + (2α− 1)2
n∑

1=i,j

(tj − tj−1) (ti − ti−1)

= 2
[
α2 + (1− α)2

] n∑
j=1

(
b− a
n

)2

+ (2α− 1)2
n∑

1=i,j

(
b− a
n

)(
b− a
n

)

= 2
[
α2 + (1− α)2

] (b− a)2

n
+ (2α− 1)2 (b− a)2 .

The next lemma shows the mean-square convergence of the random variables
Xn.
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Lemma 2.3. The sequence {Xn}∞n=1 converges to (2α− 1) (b− a) in L2 (Ω), that
is,

ms-lim
n→∞

Xn = (2α− 1) (b− a) .

Proof. Put X = (2α− 1) (b− a) and observe that

E
[
|Xn −X|2

]
= E

[
X2
n − 2XXn +X2

]
= E

[
X2
n

]
− 2XE [Xn] +X2

= 2
[
α2 + (1− α)2

] (b− a)2

n
+ (2α− 1)2 (b− a)2

−2 (2α− 1)2 (b− a)2 + [(2α− 1) (b− a)]2

= 2
[
α2 + (1− α)2

] (b− a)2

n
.

Then, taking limit in the last equation, it follows that

lim
n→∞

E
[
|Xn −X|2

]
= lim

n→∞
2
[
α2 + (1− α)2

] (b− a)2

n
= 0,

which proves our claim.

Now, we are ready to give an explicit expression of I (B (t) , t ∈ [a, b], α) in terms
of the Brownian motion and α.

Theorem 2.4. For each α ∈ [0, 1] and interval [a, b], it holds that

I
(
B (t) , t ∈ [a, b], α

)
=

1

2

[
B (b)2 −B (a)2 + (2α− 1) (b− a)

]
. (2.3)

Proof. Recall that τj = (1− α) tj−1 + αtj for j = 1, . . . , n. Then

I
(
B (t) , t ∈ [a, b], α

)
= ms-lim

n→∞

n∑
j=1

B (τj)
[
B (tj)−B (tj−1)

]
with τj = (1− α) tj−1 + αtj

= ms-lim
n→∞

n∑
j=1

{
B (τj)

[
B (τj)−B (tj−1)

]
+B (τj)

[
B (tj)−B (τj)

]}
= ms-lim

n→∞

n∑
j=1

1

2

{
−
[
B (τj)−

(
B (τj)−B (tj−1)

)]2
+
[
B (τj)−B (tj−1)

]2
+
[
B (τj) +

(
B (tj)−B (τj)

)]2
−
[
B (tj)−B (τj)

]2}
= ms-lim

n→∞

n∑
j=1

1

2

{
B (tj)

2 −B (tj−1)2

+
[
B (τj)−B (tj−1)

]2
−
[
B (tj)−B (τj)

]2}
=

1

2
ms-lim
n→∞

n∑
j=1

{
[B (τj)−B (tj−1)]2 − [B (tj)−B (τj)]

2}
+

1

2

[
B (b)2 −B (a)2

]
.
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By Lemma 2.3, we have that

ms-lim
n→∞

n∑
j=1

{[
B (τj)−B (tj−1)

]2
−
[
B (tj)−B (τj)

]2}
= (2α− 1) (b− a) .

Thus,

I
(
B (t) , t ∈ [a, b], α

)
=

1

2

[
B (b)2 −B (a)2

]
+

1

2
(2α− 1) (b− a) (2.4)

Since I
(
B (t) , t ∈ [a, b], α

)
depends on α, two natural questions arise:

1. For which α the fundamental theorem of calculus is true?

2. For which α, the collection of variables

Ms := I
(
B (t) , t ∈ [a, s], α

)
, s ∈ [a, b]

is a martingale?

Concerning to the first question, notice that α = 1
2 gives the answer because,

Theorem 2.4 leaves to

I

(
B (t) , t ∈ [a, b],

1

2

)
=

1

2

[
B (b)2 −B (a)2

]
.

Concerning to the second question, consider the natural filtration of the Brown-
ian motion Bt, t ∈ [a, b]. Using Proposition 1.2, we see that

E [Mt|Bs] = E
[

1

2

[
B (t)2 −B (a)2 + (2α− 1) (t− a)

]∣∣∣Bs

]
=

1

2
E
[
B (t)2 + (2α− 1) t

∣∣∣Bs

]
− 1

2
E
[
B (a)2 + (2α− 1) a

∣∣∣Bs

]
=

1

2

[
B (s)2 + (t− s) + (2α− 1) t−B (a)2 − (2α− 1) a

]
=

1

2

[
B (s)2 −B (a)2 + (2α− 1) (s− a) + 2α (t− s)

]
= Ms + 2α (t− s) .

Then, the value α = 0 answers the question.

Remark 3. Let Y (s) = B (b) , s ∈ [a, b] and

M (t) = I
(
Y (s) , s ∈ [a, t] , α

)
, t ∈ [a, b]

= B (b) [B (t)−B (a)] for t ∈ [a, b]

Notice that this process is not adapted to the filtration {Bt}t∈[a,b] and hence, M (t) , t ∈
[a, b] can not be a martingale. Thus, to ensure the martingale property is required
the “integrand” processes have to be an adapted process to {Bt}t∈[a,b].
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Summarizing, we have the following:

• the value α = 0 yields the process (2.4) is a martingale;

• remark 3 shows that the martingale property can fail if the integrand is not
adapted to the filtration {Bt}t∈[a,b];

• the value α = 1
2 shows the fundamental theorem of calculus holds for the

integrand B (t) , t ∈ [a, b].

The integrals resulting for α = 0 is called Itô integral, whereas α = 1
2 is known

as Stratonovich integral. The next sections give the rigorous definition of these
integrals.

2.2 Itô Integral

This section discusses the construction of the Itô integral, given by Kuo ([15], Chap-
ters 4 and 5). For that purpose, consider a Brownian motion B (t) , t ∈ [a, b] and a
filtration {Ft}t∈[a,b] satisfying the following conditions:

1. For each t ∈ [a, b], B (t) is Ft-measurable.

2. For any s ≤ t, the random variable B (t)−B (s) is independent of the σ-algebra
Fs.

This construction is carried out in three steps. The first one define the integral for
simple process, which are introduced below.

Definition 2.5. A stochastic process f (t, ω) , t ∈ [a, b], adapted to {Ft}t∈[a,b] is
called simple process (or step process) if

f (t, ω) =
n∑
j=1

ψj−1 (ω) I[tj−1,tj) (t) , (2.5)

where {t0, t1, . . . , tn} is a partition of [a, b], ψk−1 are Ftk−1
-measurable and ψk is a

square integrable random variable for k = 0, 1, . . . , n− 1.

The second step extends the integral to square-integrable stochastic process,
which are defined as follows.

Definition 2.6. A stochastic process f (t, ω) adapted to {Ft}t∈[a,b] is called square-
integrable if ∫ b

a
E
[
|f (t) |2

]
dt <∞. (2.6)

This step is realized by a mean-square limit of simple process. The third step
extends the integral to stochastic process that satisfies the condition∫ b

a
|f (t) |2dt <∞, a.s. (2.7)
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In other words, the third step consists in the construction of an stochastic integral
for process f (t, ω) whose sample paths are functions in L2 ([a, b]). This construction
is necessary because not all continuous process are square integrable; for example,

X (t) = exp
[
B (t)2

]
does not satisfy (2.6) but it does condition (2.7).

Step 1: simple process

Denote by Sad ([a, b]) the set of simple processes adapted to the filtration {Ft}t∈[a,b]

on [a, b]. For f (t) ∈ Sad, define the Itô integral of f as the Riemann-Stieltjes sum∫ b

a
f (s)dB (s) :=

n∑
k=1

ψk−1 [B (tk)−B (tk−1)] . (2.8)

The Itô integral
∫ b
a ·dB (s) satisfies the below properties,

1. E
[∫ b
a f (s)dB (s)

]
= 0.

2. E
[∣∣∣ ∫ ba f (s)dB (s)

∣∣∣2] =
∫ b
a E
[
f (t)2

]
ds.

3.
∫ t
a f (s)dB (s) is a martingale with respect to the filtration {Ft}t∈[a,b].

Property 2 implies that the mapping

f (s)→
∫ b

a
f (s)dB (s)

is an isometry from Sad [a, b] into L2 (Ω).

The next lemma is important to extend the stochastic integral to square-integrable
process.

Lemma 2.7. Let f (t, ω) a simple process in Sad ([a, b]). Then, the inequality

P

{∣∣∣∣∫ b

a
f (s)dB (s)

∣∣∣∣ > ε

}
≤ C

ε2
+ P

{∫ b

a

∣∣∣f (t)
∣∣∣2dt > C

}
holds for any positive constants ε and C.

Proof. For each C > 0, define the stochastic process

fC (t, ω) =

{
f (t, ω) if

∫ t
a |f (s, ω) |2ds ≤ C

0 otherwise

Next, observe that{∣∣∣∣∫ b

a

f (s)dB (s)

∣∣∣∣ > ε

}
⊂
{∣∣∣∣∫ b

a

fC (s)dB (s)

∣∣∣∣ > ε

}
∪
{∫ b

a

f (s)dB (s) 6=
∫ b

a

fC (s)dB (s)

}
.
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which implies that

P

{∣∣∣∣∫ b

a

f (s)dB (s)

∣∣∣∣ > ε

}
≤ P

{∣∣∣∣∫ b

a

fC (s)dB (s)

∣∣∣∣ > ε

}
+ P

{∫ b

a

f (s)dB (s) 6=
∫ b

a

fC (s)dB (s)

}
.

On the other hand, note that{∫ b

a

f (s)dB (s) 6=
∫ b

a

fC (s)dB (s)

}
⊂
{∫ b

a

|f (t)|2 dt > C

}
and also that

∫ b
a |fC (t) |2dt ≤ C a.s., so E

[∫ b
a |fC (t) |2dt

]
≤ C. Then,

P

{∣∣∣∣∫ b

a

f (s)dB (s)

∣∣∣∣ > ε

}
≤ P

{∣∣∣∣∫ b

a

fC (s)dB (s)

∣∣∣∣ > ε

}
+ P

{∫ b

a

f (s)dB (s) 6=
∫ b

a

fCdB (s)

}
≤ P

{∣∣∣∣∫ b

a

fC (s)dB (s)

∣∣∣∣ > ε

}
+ P

{∫ b

a

|f (t)|2 dt > C

}
≤ 1

ε2
E

[∣∣∣∣∫ b

a

fC (s)dB (s)

∣∣∣∣2
]

+ P

{∫ b

a

|f (t)|2 dt > C

}
=

1

ε2

∫ b

a

E
[
|fC (t)|2

]
dt+ P

{∫ b

a

|f (t)|2 dt > C

}
≤ C

ε2
+ P

{∫ b

a

|f (t)|2 dt > C

}
,

which is the desired result.

Step 2: square integrable process

Let L2
ad ([a, b]× Ω) be the set of square-integrable processes, that is, the set of

stochastic processes that satisfy (2.6). It is clear that Sad ⊂ L2
ad ([a, b]× Ω). The

next lemma shows that Sad [a, b] is dense in L2
ad ([a, b]× Ω).

Lemma 2.8. Let f ∈ L2
ad ([a, b]× Ω). There exists a sequence {fn (t)}∞n=1 ⊂

Sad ([a, b]) such that

lim
n→∞

∫ b

a
E [f (t)− fn (t)]2 dt = 0. (2.9)

Proof. The proof of this lemma is given in three cases.

• First case. In this case we prove the lemma assuming that the mapping

(s, t)→ E [f (s) f (t)] (2.10)

is continuous on [a, b]× [a, b].

Let πn = {t0, . . . , tn} be a partition of [a, b] and define the stochastic process
fn (t, ω) = f (ti−1, ω), ti−1 < t ≤ ti. Note that fn (t, ω) ∈ Sad [a, b], for each n.
The continuity of mapping in (2.10) implies that

lim
s→t

E
[
|f (t)− f (s) |2

]
= 0;

in particular,
lim
n→∞

E
[
|f (t)− fn (t) |2

]
= 0. (2.11)
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On the other hand,

E
[
|f (t)− fn (t) |2

]
≤ 2

(
E
[
f (t)2

]
+ E

[
fn (t)2

])
≤ 4 sup

a≤s≤b
E
[
f (s)2

]
(2.12)

Finally, properties (2.11) and (2.12) combined with the Lebesgue bounded
convergence theorem imply that (2.9) is satisfied.

• Second case. Consider a bounded stochastic process f ∈ L2
ad ([a, b]× Ω) and

define

gn (t, ω) =

∫ n(t−a)

0
e−τf

(
t− τ

n
, ω
)
dτ

It is not difficult to prove that gn ∈ L2
ad ([a, b]× Ω). Moreover, for each n, gn

satisfies the following two properties:

(a) E [gn (t) gn (s)] is a continuous function in (s, t);

(b)
∫ b
a E
[
|f (t)− gn (t) |2

]
dt→ 0 as n→∞.

The fact (a) implies the existence of a simple process fn (t) such that∫ b

a
E
[
|fn (t)− gn (t) |2

]
dt ≤ 1

n
. (2.13)

From (2.13) and the fact (b), it follows that∫ b

a
E [f (t)− fn (t)]2 dt ≤ 2

∫ b

a
E [f (t)− gn (t)]2 dt

+2

∫ b

a
E [gn (t)− fn (t)]2 dt

≤ 2

∫ b

a
E [f (t)− gn (t)]2 dt+

2

n
,

which in turn implies that

lim
n→∞

∫ b

a
E [f (t)− fn (t)]2 dt = 0.

• Third case. Consider a process f ∈ L2
ad ([a, b]× Ω) and define

gn (t, ω) =

{
f (t, ω) if |f (t, ω) | ≤ n,

0 if |f (t, ω) | > n,

for each n. Now, as gn is bounded, the second case of this proof implies the
existence of a simple process fn (t) such that∫ b

a
E
[
|fn (t)− gn (t) |2

]
dt ≤ 1

n
;
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thus, the Lebesgue dominated convergence theorem implies that∫ b

a
E
[
|f (t)− gn (t) |2

]
dt→ 0,

which complete the proof.

Proposition 2.9. Let {fn (t)}∞n=1 be a sequence of step process on Sad ([a, b]) such
that satisfies Lemma 2.8 for f (t) ∈ L2

ad ([a, b]× Ω). Then, the sequence{∫ b

a
fn (s)dB (s)

}∞
n=1

(2.14)

is a convergent sequence in L2 (Ω).

Proof. Since the sequence {fn (t)}∞n=1 ⊂ Sad ([a, b]) and fn − fm ∈ Sad ([a, b]) for
each n,m ∈ N, it follows that

E
[∣∣∣ ∫ b

a
fn (s)dB (s)−

∫ b

a
fm (s)dB (s)

∣∣∣2] = E
[∣∣∣ ∫ b

a

(
fn (s)− fm (s)

)
dB (s)

∣∣∣2]
=

∫ b

a
E
[
|fn (s)− fm (s) |2

]
ds

By the triangle inequality,∫ b

a
E
[
|fn (s)− fm (s) |2

]
ds =

∫ b

a
E
[
|fn (s)− f (s) + f (s)− fm (s) |2

]
ds

≤ 2

∫ b

a
E
[
|fn (s)− f (s) |2

]
ds

+2

∫ b

a
E
[
|f (s)− fm (s) |2

]
ds,

which implies that

lim
n,m→∞

E
[∣∣∣ ∫ b

a

fn (s)dB (s)−
∫ b

a

fm (s)dB (s)
∣∣∣2] ≤ lim

n,m→∞

∫ b

a

E
[
|fn (t)− fm (t) |2

]
ds

≤ 2 lim
n→∞

∫ b

a

E
[
|fn (s)− f (s) |2

]
ds

+2 lim
m→∞

∫ b

a

E
[
|f (s)− fm (s) |2

]
ds = 0

Thus, the sequence (2.14) is a Cauchy sequence in L2 (Ω). Moreover, as L2 (Ω) is a
complete metric space, every Cauchy sequence has a limit and thus,

L = lim
n→∞

∫ b

a
fn (s)dB (s)

exists.
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Let show that L does not depend of the choice of the sequence. For instance,
let {fn (t)}∞n=1 and {gm (t)}∞n=1 be two sequences on Sad ([a, b]) such that satisfies
Lemma 2.8 for f (t). Thus,

lim
n,m→∞

E
[∣∣∣ ∫ b

a

fn (s)dB (s)−
∫ b

a

gm (s)dB (s)
∣∣∣2] = lim

n,m→∞
E
[∣∣∣ ∫ b

a

(
fn (s)− gm (s)

)
dB (s)

∣∣∣2]
= lim

n,m→∞

∫ b

a

E
[
|fn (s)− gm (s) |2

]
ds

≤ 2 lim
n,m→∞

∫ b

a

E
[
|fn (s)− f (s) |2

]
ds

+2 lim
n,m→∞

∫ b

a

E
[
|gm (s)− f (s) |2

]
ds = 0.

Therefore,

L = ms-lim
n→∞

∫ b

a
fn (s)dB (s) = ms-lim

m→∞

∫ b

a
gm (s)dB (s) .

By Proposition 2.9 and the last observation, the definition of the Itô integral for
functions on L2

ad ([a, b]× Ω), given below, is well-defined.

Definition 2.10. The Itô integral of a process f (t, ω) ∈ L2
ad ([a, b]× Ω) is defined

as ∫ b

a
f (s)dB (s) := ms-lim

n→∞

∫ b

a
fn (s)dB (s) (2.15)

where {fn (s)}∞n=1 is a sequence of simple processes in Sad ([a, b]) that satisfies Lemma
2.8 for f (s).

Proposition 2.11. Let be f ∈ L2
ad ([a, b]× Ω). Then,

∫ t
a f (s)dB (s) is a martingale

on t with respect to the filtration {Ft}t∈[a,b].

This proof can be found in [18].

Step 3: an extension by localization

Denote by Lad
(
Ω, L2 ([a, b])

)
the class of stochastic process f (t, ω) , t ∈ [a, b] adapted

to {Ft} with almost all sample paths in L2 ([a, b]). More briefly,

Lad
(
Ω, L2 ([a, b])

)
= {f (t, ω) | f (t, ω) satisfy (2.7) a.s.} (2.16)

It is not difficult to show that

L2
ad ([a, b]× Ω) ⊂ Lad

(
Ω, L2 ([a, b])

)
.

Moreover,

Lad
(
Ω, L2 [a, b]

)
− L2

ad ([a, b]× Ω) 6= ∅.

The next example shows the last assertion.
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Example 1. Consider [a, b] = [0, 1] and let be f (t) = exp{B (t)2}. After some
calculations, one can obtain that

E
[
|f (t) |2

]
= E

[
exp{2B (t)2}

]
=

{
(1− 4t)−

1
2 if 0 ≤ t < 1

4 ,
∞ o.c. .

Hence, ∫ 1

0
E
[
|f (t) |2

]
dt =∞,

which means that
f (t) /∈ L2

ad ([0, 1]× Ω) .

On the other hand, f (t) is uniformly continuous a.s. on [0, 1]. This implies that
exists a constant M > 0 such that |f (t) | ≤ M a.s.. Then,

∫ 1
0 |f (t) |2dt < M2 <∞

a.s., that is,
f (t) ∈ Lad

(
Ω, L2 [0, 1]

)
.

In order to define the Itô integral for a stochastic process f ∈ Lad
(
Ω, L2 [a, b]

)
,

we need two approximations lemmas. The first one implies that L2
ad ([a, b]× Ω) is

dense on Lad
(
Ω, L2 [a, b]

)
with respect to the convergence in probability.

Lemma 2.12. Let f ∈ Lad
(
Ω, L2 ([a, b])

)
. Then there exists a sequence {fn (t, ω)}

in L2
ad ([a, b]× Ω) such that

lim
n→∞

∫ b

a
|fn (t)− f (t) |2dt = 0

almost surely and in probability.

Proof. For each n, let define

fn (t, ω) =

{
f (t, ω) if

∫ t
a |f (s, ω) |2ds ≤ n,

0 o.c.

The stochastic process fn (t, ω) is adapted to the filtration {Ft}t∈[a,b]. Also,∫ b

a
|fn (t, ω) |2dt =

∫ τn(ω)

a
|f (t, ω) |2dt a.s.,

where τn (ω) := sup{ t :
∫ t
a |f (s, ω) |2ds ≤ n }. Thus,∫ b

a
|fn (t, ω) |2dt ≤ n a.s..

Then,
∫ b
a E
[
|fn (t, ω) |2

]
dt ≤ n and fn ∈ L2

ad ([a, b]× Ω).

By other hand, for each ω ∈ Ω there exists N = N (ω) ∈ N such that∫ b

a
|f (t, ω) |2dt < N ;
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thus, fN (t, ω) = f (t, ω) for all t ∈ [a, b]. Therefore,

lim
n→∞

∫ b

a
|fn (t, ω)− f (t, ω) |2dt = 0 a.s.

Finally, the convergence in probability is obtained by the Remark 1(a).

The next lemma shows that Sad [a, b] is dense on Lad with respect to the conver-
gence in probability.

Lemma 2.13. Let f (t) ∈ Lad
(
Ω, L2 [a, b]

)
. Then there exists a sequence {fn (t)}∞n=1

of simple process of Sad ([a, b]) such that

lim
n→∞

∫ b

a
|fn (t)− f (t)|2 dt = 0 in probability.

Proof. As f (t) ∈ Lad
(
Ω, L2 [a, b]

)
, Lemma 2.12 implies the existence of a sequence

{gn (t)}∞n=1 ⊂ L2
ad ([a, b]× Ω) such that

lim
n→∞

∫ b

a
|gn (t)− f (t)|2 dt = 0 in probability.

By Lemma 2.8, for each gn (t) there exists a step process fn (t) ⊂ Sad [a, b] such that

E
[∫ b

a

∣∣∣fn (t)− gn (t)
∣∣∣2dt] < 1

n
.

Next, if ε > 0, then{∫ b

a

∣∣∣fn (t)− f (t)
∣∣∣2dt > ε

}
⊂
{∫ b

a

∣∣∣fn (t)− gn (t)
∣∣∣2dt > ε

4

}
∪
{∫ b

a

∣∣∣gn (t)− f (t)
∣∣∣2dt > ε

4

}
.

Thus,

P

{∫ b

a

∣∣∣fn (t)− f (t)
∣∣∣2dt > ε

}
≤ P

{∫ b

a

∣∣∣fn (t)− gn (t)
∣∣∣2dt > ε

4

}
+P

{∫ b

a

∣∣∣gn (t)− f (t)
∣∣∣2dt > ε

4

}
≤ 4

εn
+ P

{∫ b

a

∣∣∣gn (t)− f (t)
∣∣∣2dt > ε

4

}
and the proof is completed.

Proposition 2.14. Let f (t) ∈ Lad
(
Ω, L2 [a, b]

)
and {fn (t)}∞n=1 ⊂ Sad [a, b] the

sequence of step processes that satisfies Lemma 2.13. Then, the sequence{∫ b

a
fn (s)dB (s)

}∞
n=1

(2.17)

is convergent in probability.
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Proof. By Lemma 2.7, if h = fn − fm, ε > 0 and C = ε3

2 , then

P

{∣∣∣∣ ∫ b

a
h (s)dB (s)

∣∣∣∣ > ε

}
= P

{∣∣∣∣ ∫ b

a

(
fn (s)− fm (s)

)
dB (s)

∣∣∣∣ > ε

}
≤ ε

2
+ P

{∫ b

a

∣∣∣fn (t)− fm (t)
∣∣∣2dt > ε3

2

}
.

Also,{∫ b

a

∣∣∣fn (t)− fm (t)
∣∣∣2dt > ε3

2

}
⊂
{∫ b

a

∣∣∣fn (t)− f (t)
∣∣∣2dt > ε3

8

}
∪
{∫ b

a

∣∣∣f (t)− fm (t)
∣∣∣2dt > ε3

8

}
and

P

{∫ b

a

∣∣∣fn (t)− fm (t)
∣∣∣2dt > ε3

2

}
≤ P

{∫ b

a

∣∣∣fn (t)− f (t)
∣∣∣2dt > ε3

8

}
+P

{∫ b

a

∣∣∣f (t)− fm (t)
∣∣∣2dt > ε3

8

}
.

This concludes that

lim
n,m→∞

P

{∫ b

a

∣∣∣fn (t)− fm (t)
∣∣∣2dt > ε3

2

}
= 0.

Thus, there exists N ∈ N such that

P

{∫ b

a

∣∣∣fn (t)− fm (t)
∣∣∣2dt > ε3

2

}
<
ε

2
∀ n,m ≥ N

which implies that

P

{∣∣∣ ∫ b

a
h (s)dB (s)

∣∣∣ > ε

}
= P

{∣∣∣ ∫ b

a
fn (s)dB (s)−

∫ b

a
fm (s)dB (s)

∣∣∣ > ε

}
≤ ε

2
+ P

{∫ b

a

∣∣∣fn (t)− fm (t)
∣∣∣2dt > ε3

2

}
≤ ε ∀ n,m ≥ N.

Finally, the last equation shows that the sequence (2.17) is convergent in prob-
ability and

L = lim
n→∞

∫ b

a
fn (s)dB (s) in probability

exists.

Let show that L does not depend of the choice of the sequence. For instance, let
{fn (s)}∞n=1 and {gm (s)}∞n=1 be two sequences on Sad ([a, b]) that satisfies Lemma
2.13 for f (s).
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Applying Lemma 2.7 for h = fn − gm, ε > 0 and C = ε3

2 , we hold that

P

{∣∣∣ ∫ b

a
h (s)dB (s)

∣∣∣ > ε

}
= P

{∣∣∣ ∫ b

a

(
fn (s)− gm (s)

)
dB (s)

∣∣∣ > ε

}
≤ ε

2
+ P

{∫ b

a

∣∣∣fn (t)− gm (t)
∣∣∣2dt > ε3

2

}
.

By other hand,{∫ b

a

∣∣∣fn (t)− gm (t)
∣∣∣2dt > ε3

2

}
⊂
{∫ b

a

∣∣∣fn (t)− f (t)
∣∣∣2dt > ε3

8

}
∪
{∫ b

a

∣∣∣f (t)− gm (t)
∣∣∣2dt > ε3

8

}
implies that

P

{∫ b

a

∣∣∣fn (t)− gm (t)
∣∣∣2dt > ε3

2

}
≤ P

{∫ b

a

∣∣∣fn (t)− f (t)
∣∣∣2dt > ε3

8

}
+P

{∫ b

a

∣∣∣gm (t)− f (t)
∣∣∣2dt > ε3

8

}
,

which concludes, by Lemma 2.13, that

lim
n,m→∞

P

{∫ b

a

∣∣∣fn (t)− gm (t)
∣∣∣2dt > ε3

2

}
= 0

Thus, there exists N ∈ N such that

P

{∫ b

a

∣∣∣fn (t)− gm (t)
∣∣∣2dt > ε3

2

}
<
ε

2
∀ n,m ≥ N

which implies that

P

{∣∣∣ ∫ b

a
h (s)dB (s)

∣∣∣ > ε

}
= P

{∣∣∣ ∫ b

a
fn (s)dB (s)−

∫ b

a
gm (s)dB (s)

∣∣∣ > ε

}
≤ ε

2
+ P

{∫ b

a

∣∣∣fn (t)− gm (t)
∣∣∣2dt > ε3

2

}
≤ ε ∀ n,m ≥ N.

Finally, the last equation shows that

L = lim
n→∞

∫ b

a
fn (s)dB (s) = lim

m→∞

∫ b

a
gm (s)dB (s) in probability.

From the Proposition 2.14 and the last observation, the stochastic integral for
processes in Lad

(
Ω, L2 ([a, b])

)
is well-defined.

Definition 2.15. The Itô integral of a function f (t) ∈ Lad
(
Ω, L2 ([a, b])

)
is defined

as ∫ b

a
f (s)dB (s) = lim

n→∞

∫ b

a
fn (s)dB (s) in probability,

where {fn (t)}∞n=1 is a sequence of simple processes in Sad ([a, b]) such that

lim
n→∞

∫ b

a
|fn (t)− f (t) |2dt = 0 in probability.
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Riemann-Stieltjes sums

The Itô integral can be expressed by means of limit of Riemann-Stieltjes sums in
the case of continuous stochastic process.

Theorem 2.16. Suppose f (t) is a continuous stochastic process adapted to the
filtration {Ft}t∈[a,b]. Then f (t) ∈ Lad

(
Ω, L2 ([a, b])

)
and∫ b

a
f (s)dB (s) = lim

‖πn‖→0

n∑
i=1

f (ti−1) [B (ti)−B (ti−1)] in probability,

where πn = {t0, t1, . . . , tn−1, tn} is a partition of [a, b] and ‖ πn ‖ is the partition
norm. If in addition, f (t) ∈ L2

ad ([a, b]× Ω) and E [f (t) f (s)] is a continuous func-
tion of t and s, then∫ b

a
f (s)dB (s) = lim

‖πn‖→0

n∑
i=1

f (ti−1) [B (ti)−B (ti−1)] in L2 (Ω) .

Proof. Let πn = {t0, t1, . . . , tn} be a partition of [a, b] and

fn (t, ω) :=

n∑
i=1

f (ti−1) 1[ti−1,ti) (t) .

As f is a continuous stochastic process, then∫ b

a
|fn (t)− f (t) |2dt→ 0

almost surely and in probability as n→∞. This implies that,∫ b

a
f (t) dB (t) = lim

||πn||→0

∫ b

a
fn (t) dB (t) in probability.

Moreover, as fn ∈ Sad [a, b], then∫ b

a
fn (t) dB (t) =

n∑
i=1

f (ti−1) [B (ti)−B (ti−1)] ,

which implies that∫ b

a
f (t) dB (t) = lim

||πn||→0

n∑
i=1

f (ti−1) [B (ti)−B (ti−1)] in probability,

which proves the first assertion. In the case that f ∈ L2
ad ([a, b]× Ω) and E [f (t) f (s)]

is a continuous function of t and s, let gn (t, ω) = f (ti, ω), ti−1 < t ≤ ti. By the first
case in the proof of Lemma 2.8, we have that equation (2.9) is satisfied and hence,∫ b

a
f (s)dB (s) = lim

n→∞

∫ b

a
gn (s)dB (s) in L2 (Ω) .
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Also, ∫ b

a
gn (s)dB (s) =

n∑
i=1

fn (ti−1) [B (ti)−B (ti−1)]

=

n∑
i=1

f (ti−1) [B (ti)−B (ti−1)] .

Then, we conclude that∫ b

a
f (s)dB (s) = lim

n→∞

n∑
i=1

f (ti−1) [B (ti)−B (ti−1)] in L2 (Ω) .

The Itô formula

This section begins with an example that illustrates one of the differences between
the Riemann-Stieltjes integral and the Itô integral.

Since the identity function f (t) = t, t ∈ R, satisfies the assumptions in Theorem
2.16, it follows from equation (2.4) with α = 0 that∫ t

a
B (s)dB (s) =

1

2

[
B (t)2 −B (a)2 − (t− a)

]
Thus, the Itô integral does not follows the usual rules of the Riemann-Stieltjes
integral. Note that the above equality can be re-written as

B (t)2 = B (a)2 + 2

∫ t

a
B (s)dB (s) + (t− a) , ∀ t ∈ [a, b] .

Now, putting f (t) = t2, t ∈ R, the above equality becomes in

f
(
B (t)

)
= f

(
B (a)

)
+

∫ t

a
f ′
(
B (s)

)
dB (s) +

1

2

∫ t

a
f ′′
(
B (s)

)
ds.

The so-called Itô formula shows that this formula holds for all functions f ∈ C2 ([a, b]).

The Itô formula open the door to a stochastic calculus; thus, it can be considered
as the “fundamental theorem of stochastic calculus”.

Theorem 2.17. If f ∈ C2 ([a, b]), then

f
(
B (t)

)
= f

(
B (a)

)
+

∫ t

a
f ′
(
B (s)

)
dB (s) +

1

2

∫ t

a
f ′′
(
B (s)

)
ds (2.18)

where the first integral is an Itô integral and the second one is a Riemann integral
for each sample path of B (s).
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The equality (2.18) is called Itô formula and its proof can be found in [15, p.95].
Here, we present an informal approach. Consider f as a C2-function and observe
that

f (x)− f (x0) = f ′ (x0) (x− x0) +
1

2
f ′′
(
x0 + λ (x− x0)

)
(x− x0)2

where 0 < λ < 1. Therefore, if πn = {t0, . . . , tn} is a partition of [a, b], then

f
(
B (b)

)
− f

(
B (a)

)
=

n∑
i=1

[
f
(
B (ti)

)
− f

(
B (ti−1)

)]
=

n∑
i=1

f ′
(
B (ti−1)

)[
B (ti)−B (ti−1)

]
+

1

2

n∑
i=1

f ′′
(
B (ti−1) + λ

[
B (ti)−B (ti−1)

])[
B (ti)−B (ti−1)

]2
.

The first summation converges in probability to the Itô integral of f ′ (B (t)), that
is,

P-lim
‖πn‖→0

n∑
i=1

f ′ (B (ti−1)) [B (ti)−B (ti−1)] =

∫ b

a
f ′dB (s) .

On the other hand, there exists a subsequence of partitions {πnk}∞k=1 ⊂ {πn}∞n=1

with ‖ πnk ‖→ 0 as k → ∞, such that the second summation converges to the
Riemann integral of f ′′ (B (t)), that is,

nk∑
i=1

f ′′
(
B
(
tni−1

)
+ λ

[
B (tni)−B

(
tni−1

)] ) [
B (tni)−B

(
tni−1

)]2 → ∫ b

a
f ′′ (B (t)) dt.

For each f ∈ C2 ([a, b]), the Itô formula (2.18) represents the stochastic process
f (B (t)) as a sum of a Riemann integral and an Itô integral. The stochastic processes
that can be expressed in this form are called Itô processes.

Let Lad
(
Ω, L1 ([a, b])

)
be the set of stochastic process g (t, ω) adapted to {Ft}t∈[a,b],

such that

P

[∫ b

a

∣∣∣g (t, ω)
∣∣∣dt <∞] = 1.

Definition 2.18. Let {Ft}t∈[a,b] a filtration that satisfies the two conditions ex-
pressed at the beginning of Section 2.2. A stochastic process X (t, ω) is called an
Itô process if X (a) is Fa-measurable and there exists f ∈ Lad

(
Ω, L2 ([a, b])

)
and

g ∈ Lad
(
Ω, L1 ([a, b])

)
such that

X (t) = X (a) +

∫ t

a
f (s) dB (s) +

∫ t

a
g (s) ds, a ≤ t ≤ b, (2.19)

Equation (2.19) is called the integral form of an Itô process.

Remark 4. Equation (2.19) is also written as

dX (t) = f (t) dB (t) + g (t) dt, (2.20)

and is called the “stochastic differential form” of an Itô process. This expression is
quite useful to do straightforward calculus, but it does not has a formal meaning
because the sample-paths of the Brownian motion are nowhere differentiable.
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The next theorem presents a generalization of the Itô formula for Itô processes.

Theorem 2.19. Let X (t) be an Itô process given by

X (t) = X (a) +

∫ t

a
f (s) dB (s) +

∫ t

a
g (s) ds, a ≤ t ≤ b.

Suppose F (t, x) is a continuous function with continuous partial derivatives Ft, Fx
and Fxx. Then, F (t,X (t)) is also an Itô process and

F (t,X (t)) = F (a,X (a)) +

∫ t

a
Fx (s,X (s)) f (s)dB (s)

+

∫ t

a
[Ft (s,X (s)) + Fx (s,X (s)) g (s)

+
1

2
Fxx (s,X (s)) f (s)2

]
ds. (2.21)

Using the “stochastic differential form” of an Itô process, this generalization can
be formally obtained using the Itô table:

× dB (t) dt

dB (t) dt 0

dt 0 0

If

dX (t) = f (t) dB (t) + g (t) dt,

then,

dF (t,X (t)) = Ft (t,X (t)) dt+ Fx (t,X (t)) dX (t) +
1

2
Fxx (t,X (t)) (dX (t))2

= Ft (t,X (t)) dt+ Fx (t,X (t))
[
f (t) dB (t) + g (t) dt

]
+

1

2
Fxx (t,X (t))

[
f (t) dB (t) + g (t) dt

]2

= Ft (t,X (t)) dt+ Fx (t,X (t)) f (t) dB (t) + Fx (t,X (t)) g (t) dt

+
1

2
Fxx (t,X (t))

[
f (t)2 (dB (t))2 + f (t) g (t) dB (t) dt

+g (t) f (t) dtdB (t) + g (t)2 (dt)2
]

= Ft (t,X (t)) dt+ Fx (t,X (t)) f (t) dB (t)

+Fx (t,X (t)) g (t) dt+
1

2
Fxx (t,X (t)) f (t)2 dt

= Fx (t,X (t)) f (t) dB (t) + [Ft (t,X (t))

+Fx (t,X (t)) g (t) +
1

2
Fxx (t,X (t)) f (t)2

]
dt.
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2.3 Stratonovich integral

Recall that in Section 2.1 we saw that

I

(
B (t) , t ∈ [a, b],

1

2

)
=

1

2

[
B (b)2 −B (a)2

]
.

This shows that, if one seek to define a stochastic integral that satisfies the usual
rules of calculus, then α = 1

2 is necessary. This stochastic integral will be called
Stratonovich integral, and it can be defined in terms of the Itô integral of an Itô
process.

Definition 2.20. Let X (t, ω) be an Itô process given by

X (t) = X (a) +

∫ t

a
f (s) dB (s) +

∫ t

a
g (s) ds, a ≤ t ≤ b.

The Stratonovich integral of X (t, ω) with respect to the Brownian motion B (t, ω),
denoted by S (X, [a, b]), is defined by∫ b

a
X (s) ◦ dB (s) :=

∫ b

a
X (s)dB (s) +

1

2

∫ b

a
f (s) ds. (2.22)

In general, for an Itô process X (t) , t ∈ [a, b], there exists a modified version of
the Itô formula for the Stratonovich integral. Let start with the next lemma.

Lemma 2.21. Let X (t) be an Itô process given by

X (t) = X (a) +

∫ t

a
f (s) dB (s) +

∫ t

a
g (s) ds, a ≤ t ≤ b.

Suppose F (t, x) is a continuous function with continuous partial derivative Fx and
Fxx. Then,∫ t

a
Fx (s,X (s)) f (s) ◦ dB (s) =

∫ t

a
Fx (s,X (s)) f (s)dB (s)

+
1

2

∫ t

a
Fxx (s,X (s)) f (s)2ds.

Then, the Itô formula for Stratonovich integral is presented here.

Theorem 2.22. Let X (t) be an Itô process given by

X (t) = X (a) +

∫ t

a
f (s) dB (s) +

∫ t

a
g (s) ds, a ≤ t ≤ b.

Suppose F (t, x) is a continuous function with continuous partial derivatives Ft, Fx
and Fxx. Then, F (t,X (t)) is also an Itô process and

F (t,X (t)) = F (a,X (a)) +

∫ t

a
Fx (s,X (s)) f (s) ◦ dB (s)

+

∫ t

a

[
Ft (s,X (s)) + Fx (s,X (s)) g (s)

]
ds.
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The proof of this theorem is obtained applying the Itô formula (2.21) for the Itô
process X (t) , t ∈ [a, b] and Lemma 2.21. In particular, for X (t) = B (t) (f (t) = 1
and g (t) = 0), the Stratonovich integral satisfies the integration by parts formula.

Corollary 2.23. Let h (t, x) a continuous function, H (t, x) an antiderivative in x
of h (t, x) and assume that Ht, ht and hx are continuous. Then,∫ b

a
h (t, B (t)) ◦ dB (s) = H (t, B (t))

∣∣∣b
a
−
∫ b

a
Ht (s,B (s)) ds. (2.23)

In the case that h (t, x) does not depend of t, then∫ b

a
h (t, B (t)) ◦ dB (s) = H (t, B (t))

∣∣∣b
a
. (2.24)

Riemann-Stieltjes sums

The Stratonovich integral can be also obtained as a limit of Riemann-Stieltjes sums.

Theorem 2.24. Suppose f (t, x) is a continuous function with continuous partial

derivatives ∂f
∂t , ∂f

∂x and ∂2f
∂x2

. Then,∫ b

a

f (t, B (t)) ◦ dB (s) = P-lim
‖πn‖→0

n∑
k=1

f

(
t?k,

1

2
(B (tk−1) +B (tk))

)
[B (tk)−B (tk−1)]

= P-lim
‖πn‖→0

n∑
k=1

f

(
t?k, B

(
tk−1 + tk

2

))
[B (tk)−B (tk−1)]

where πn = {t0, t1, . . . , tn−1, tn} is a partition of [a, b], t?k ∈ [tk−1, tk] is arbitrary and
‖ πn ‖ is the partition norm.





Chapter 3

Stochastic Differential Equations

Introduction

This chapter has the aim to introduce the concept of solution of a stochastic differ-
ential equation (SDE) (in the Itô sense) and to establish sufficient conditions about
the existence and uniqueness of solutions for SDE that describe population models.

In section 3.1, the concept of solution of a SDE is presented, the theorem of exis-
tence and uniqueness of solutions with non-usual Itô conditions [8, p.48] is presented
and an approximation theorem for their moments is exhibited. In section 3.2, the
idea of a global solution for SDE is defined and we establish the feller criteria to
avoid explosions for global solution ([12], [16]).

At section 3.3, the characterization as Markov and diffusion process of solution
of SDE is showed and finally, in section 3.4 is dedicated to define the concept of
attracting and attainable states [13].

3.1 Solution of stochastic differential equations

Let B (t) , t ∈ [a, b] be a Brownian motion on [a, b] and {Ft}t∈[a,b] a filtration such
that B (t) is Ft-measurable and B (t)−B (s) is independent of Fs for any s ≤ t.

Definition 3.1. Let F,G : [a, b]× R→ R be F-measurable functions. A stochastic
process X (t) , t ∈ [a, b] on the probability space (Ω,F,P) is called a strong solution
of the stochastic differential equation (SDE)

dX (t) = F (t,X (t)) dB (t) +G (t,X (t)) dt, (3.1)

with initial condition X (a) = Z if

(a) X (t) is Ft-measurable for each t ∈ (a, b);

(b) X (t) , [a, b] is a continuous process;

(c) P [X (a) = Z] = 1;

(d) F (t,X (t)) ∈ Lad
(
Ω, L2 ([a, b])

)
, G (t,X (t)) ∈ Lad

(
Ω, L1 ([a, b])

)
; and,

(e) with probability 1,

X (t) = Z +

∫ t

a
F (s,X (s)) dB (s) +

∫ t

a
G (s,X (s)) ds, a ≤ t ≤ b. (3.2)

33
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The functions F,G are called the coefficients of the SDE (3.1).

As in the theory of ordinary differential equations, there exists conditions for the
coefficients F,G that guarantee the existence and uniqueness of a strong solution for
the stochastic differential equation:

(a) Lipschitz condition. There exists a constant K > 0 such that

|F (t, x)− F (t, y) |+ |G (t, x)−G (t, y) | ≤ K|x− y|, (3.3)

for all t ∈ [a, b], x, y ∈ R.

(b) Growth condition. There exists K > 0 such that

|F (t, x) |2 + |G (t, x) |2 ≤ K
(
1 + x2

)
(3.4)

for all t ∈ [a, b], x ∈ R.

These conditions are called Itô conditions. The next result shows that the Itô con-
ditions guarantee the existence and uniqueness of a strong solution for a stochastic
differential equation. Its proof can be found in [8, p. 40].

Theorem 3.2. Let F,G : [a, b]× R → R be measurable functions satisfying the Itô
conditions and Z a r.v. independent of the Brownian motion such that E

[
|Z|2

]
<∞.

Then there exists a strong solution X of the SDE (3.1) such that

sup
a≤t≤b

E
[
X (t)2

]
<∞. (3.5)

Moreover, if X1 and X2 are two strong solutions of (3.1), then

P

[
sup
a≤t≤b

|X1 (t)−X2 (t) | = 0

]
= 1. (3.6)

Corollary 3.3. Assume that the functions F and G satisfies the hypothesis of The-
orem 3.2 and X (t) , t ∈ [a, b] is a strong solution of (3.1). Also, suppose that
F̃ , G̃ : [a, b]× R → R be measurable functions satisfying the Itô conditions and that
X̃ (t) , t ∈ [a, b] is a strong solution of

dX̃ (t) = F̃
(
t, X̃ (t)

)
dB (t) + G̃

(
t, X̃ (t)

)
dt (3.7)

If there exists some N > 0 such that

F̃ (t, x) = F (t, x) , G̃ (t, x) = G (t, x) for |x| ≤ N, t ∈ [a, b]

then

P

[
sup
a≤t≤τ

|X (t)− X̃ (t) | = 0

]
= 1,

where
τ := inf

a≤t≤b
{max

(
|X (t) |, |X̃ (t) |

)
> N}.
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Although the Itô conditions guarantee the existence and uniqueness of strong
solutions for the SDE (3.1), there exists function that are used to describe population
dynamics and not satisfies them. Remark 3 of [8, p.48] shows that the Lipschitz can
be weakened to a local version and the growth condition can be changed as follows:

(a) Local lipschitz condition. For all t ∈ [a, b] and each N > 0, there exists LN
such that

|F (t, x)− F (t, y) |+ |G (t, x)−G (t, y) | ≤ LN |x− y| (3.8)

for (x, y) ∈ [−N,N ]× [−N,N ].

(b) Growth condition 2. For all t ∈ [a, b] , x ∈ R, there exists K > 0 such that

xG (t, x) + |F (t, x) |2 ≤ K
(
1 + x2

)
. (3.9)

The next theorem shows that the above conditions guarantee the existence and
uniqueness of strong solutions.

Theorem 3.4. Let F,G : [a, b] × R → R be measurable functions satisfying the
local Lipschitz condition (3.8), the growth condition (3.9) and Z a r.v. such that
E
[
|Z|2

]
<∞. Then (3.1) has a unique strong solution satisfying the initial condition

Z and this solution is unique in the sense of Theorem 3.2.

The proof of this result relies on the Gronwall-Bellman inequality given in the
next lemma.

Lemma 3.5. If f (t) and g (t) are functions in L1 [a, b] and β > 0 such that

g (t) ≤ f (t) + β

∫ t

a
g (s) ds ∀ t ∈ [a, b] . (3.10)

Then,

g (t) ≤ f (t) + β

∫ t

a
eβ(t−s)f (s) ds ∀ t ∈ [a, b] (3.11)

In particular, if f ≡ α ∈ R, then

g (t) ≤ αeβ(t−a) ∀ t ∈ [a, b]

Proof. In order to prove this lemma, we first show that∫ t

a
g (s) ds ≤

∫ t

a
eβ(t−s)f (s) ds almost everywhere.1

To do this, define

h (t) =

∫ t

a
g (s) ds ∀ t ∈ [a, b] .

1almost everywhere convergece is used with respect to the Lebesgue measure.
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By (3.10),

h′ (t)− βh (t) ≤ f (t) almost surely.

Next, multiplying both sides of the last equation by eβt, we obtain

eβt
[
h′ (t)− βh (t)

]
≤ eβtf (t) almost everywhere.

It easy to note that the left side is d
dt

[
eβth (t)

]
. Then,

eβth (t) ≤
∫ t

a
eβsf (s) ds almost everywhere.

Thus,

h (t) ≤
∫ t

a
eβ(t−s)f (s) ds almost everywhere.

Now, by (3.10), it follows that

g (t) ≤ f (t) + β

∫ t

a
g (s) ds, ∀ t ∈ [a, b]

≤ f (t) + β

∫ t

a
eβt−sf (s) ds, ∀ t ∈ [a, b]

as we want to prove.

Let proceed to prove Theorem 3.4.

Proof. We first show the existence of such a solution. Let consider

ZN =

{
Z if |Z| ≤ N,
Z
|Z|N if |Z| > N ;

GN (t, x) =

{
G (t, x) if |x| ≤ N,

G
(
t, x|x|N

)
if |x| > N ;

FN (t, x) =

{
F (t, x) if |x| ≤ N,

F
(
t, x|x|N

)
if |x| > N ;

The functions FN (t, x) , GN (t, x) and the random variable ZN satisfy the conditions
in Theorem 3.2. Thus, there is a unique strong solution XN (t) , t ∈ [a, b] to the
stochastic differential equation

dXN (t) = FN (t,XN (t)) dB (t) +GN (t,XN (t)) dt (3.12)

with initial condition XN (a) = ZN . Next, let

τN := sup

{
t ∈ [a, b] | sup

a≤s≤t
|XN (s) | ≤ N

}
(3.13)
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and consider M > N . As

FM (t, x) = FN (t, x) , GM (t, x) = GN (t, x) , for x ∈ [−N,N ] , (3.14)

by the Corollary 3.3, XN (t) = XM (t) in probability on [a, τN ]. Then,

P

[
sup
a≤t≤b

|XN (t)−XM (t) | > 0

]
≤ P [τN ≤ b] = P

[
sup
a≤t≤b

|XN (t) | > N

]
Next we show that

lim
N→∞

P

[
sup
a≤t≤b

|XN (t) | > N

]
= 0.

For this aim, consider the function φ (x) = 1
1+x2

. Applying Theorem 2.19 with

H (x) = x2 to the Itô process XN (t), we see that

XN (t)2 = XN (a)2 +

∫ b

a

[
2GN (s,XN (s))XN (s) + FN (s,XN (s))2

]
ds

+2

∫ b

a
FN (s,XN (s))XN (s) dB (s) (3.15)

If we multiplying by φ [XN (a)] and taking expectation in both sides of (3.15), we
have

E
[
φ [XN (a)]

[
XN (t)2 −XN (a)2

]]
= E

[
φ [XN (a)]

∫ t

a

[
2GN (s,XN (s))XN (s) + FN (s,XN (s))2

]
ds

]
+2E

[
φ [XN (a)]

∫ t

a
FN (s,XN (s))XN (s) dB (s)

]
= E

[
φ [XN (a)]

∫ t

a

[
2GN (s,XN (s))XN (s) +GN (s,Xs (t))2

]
ds

]

because of φ [XN (a)] is bounded and FN (t,XN (t))XN (t) ∈ L2
ad ([a, b]× Ω). Then,

E
[
φ [XN (a)]

[
XN (t)2 −XN (a)2

]]
= E

[
φ [XN (a)]

∫ t

a

[
2GN (s,XN (s))XN (s) + FN (s,XN (s))2

]
ds

]
≤ 2E

[
φ [XN (a)]

∫ t

a

[
GN (s,XN (s))XN (s) + FN (s,XN (s))2

]
ds

]
≤ 2E

[
φ [XN (a)]

∫ t

a
K2
[
1 +XN (s)2

]
ds

]
= 2K2E

[
φ [XN (a)]

]
t+ 2K2E

[
φ [XN (a)]

∫ t

a
XN (s)2 ds

]
= 2K2E

[
φ [XN (a)]

]
t+ 2K2E

[
φ [XN (a)]

∫ t

a
XN (a)2 ds

]
+2K2E

[
φ [XN (a)]

∫ t

a

[
XN (s)2 −XN (a)2

]
ds

]
= 2K2E

[
φ [XN (a)]

]
t+ 2K2

∫ t

a
E
[
φ [XN (a)]XN (a)2

]
ds

+2K2

∫ t

a
E
[
φ [XN (a)]

[
XN (s)2 −XN (a)2

]]
ds

By Gronwall-Bellman inequality (3.11) and φ [XN (a)]XN (a)2 < 1,

E
[
φ [XN (a)]

[
XN (t)2 −XN (a)2

]]
≤ 2K2

(
1 + E

[
φ [XN (a)]

])(
t+ 2K2

∫ t

a

se2K
2(t−s)ds

)
,
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which implies that E
[
φ [XN (a)]XN (t)2

]
≤ H (K, t,X (a)). Thus,

E
[
φ [XN (a)] sup

a≤t≤b
XN (t)2

]
≤ H (K, t,X (a)) .

Next, for δ > 0,

P

[
sup
a≤t≤b

|XN (t) | > N

]
= P

[
φ [X (a)] sup

a≤t≤b
XN (t)2 > φ [X (a)]N2

]
= P

[
φ [X (a)] sup

a≤t≤b
XN (t)2 > φ [X (a)]N2, φ [X (a)] > δ

]
+P

[
φ [X (a)] sup

a≤t≤b
XN (t)2 > φ [X (a)]N2, φ [X (a)] ≤ δ

]
≤ P

[
φ [X (a)] sup

a≤t≤b
XN (t)2 > δN2

]
+ P [φ [X (a)] ≤ δ]

≤ P [φ [X (a)] ≤ δ] +
H (K, t,X (a))

δN2

Now,

lim
N→∞

P

[
sup
a≤t≤b

|XN (t) | > N

]
≤ P [φ [X (a)] ≤ δ] (3.16)

Since δ > 0 and P [φ [X (a)] = 0] = 0, our aim has been proved. This fact implies
that XN (t) converges uniformly with probability 1 to some limit X (t) as N →∞,
which satisfies the equality X (t) = XN (t) for all t ≤ τN .

Now we prove the uniqueness. Let X1 (t) and X2 (t) be two continuous solutions
of (3.1) satisfying the initial condition X1 (a) = X2 (a) = Z. Define

φ (t) =

{
1 if supa≤s≤t |X1 (s) | ≤ N and supa≤s≤t |X2 (s) | ≤ N
0 otherwise

Using condition (3.8),

E [X1 (t)−X2 (t)]2 φ (t) ≤ 2E
[
φ (t) {

∫ t

a
[G (s,X1 (s))−G (s,X2 (s))] ds}2

]
+2E

[
φ (t)

{∫ t

a
[F (s,X1 (s))− F (s,X2 (s))] dB (s)

}2
]

≤ 2tE
[∫ t

a
φ (s) [G (s,X1 (s))−G (s,X2 (s))]2 ds

]
+2E

[∫ t

a
φ (s) [F (s,X1 (s))− F (s,X2 (s))]2 ds

]
≤ (2b+ 2)L2

N

∫ t

a
E
[
φ (s) [X1 (s)−X2 (s)]2

]
ds.

By the Gronwall-Bellman inequality (3.11), we hold that

E
[
φ (s) [X1 (s)−X2 (s)]2

]
= 0,
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implying that

P [X1 (t) 6= X2 (t)] ≤ P

[
sup
a≤s≤b

|X1 (s) | > N

]
+ P

[
sup
a≤s≤b

|X2 (s) | > N

]
.

As X1 and X2 are continuous, then X1 and X2 are bounded. This implies that the
right side of the last inequality tend to zero as N →∞ and P [X1 (t) = X2 (t)] = 1,
as we want to show.

Finally, we establish an estimate for the moments of solution of (3.12), following
[8, p.48].

Theorem 3.6. Assume that the coefficients of (3.1) and the initial condition Z
satisfy the conditions of Theorem 3.4 and X (t) is a solution of the SDE (3.1). If
E
[
Z2m

]
<∞, then

E
[
X (t)2m

]
≤ E

[
1 + Z2m

]
e2m(2m+1)K(t−a). (3.17)

Moreover, if G (t, x) ≤ K1

(
1 + x2

)
and E

[
Z4m

]
< ∞, then there exists a constant

L > 0 depending of K,K1,m, a and b such that

E
[
[X (t)− Z]2m

]
≤ K̃

[
E
[
Z4m

]
+ 1
]

(t− a)m e2m(2m+1)K(t−a). (3.18)

Proof. Let consider FN (t, x), GN (t, x) and ZN as in Theorem 3.4. If XN (t) is a
strong solution of the SDE

dXN (t) = FN (t,XN (t)) dB (t) +GN (t,XN (t)) dt

with initial condition ZN , then XN (t) is bounded, because FN (t, x) and GN (t, x)
are bounded. Moreover,

|XN (t) | ≤ |ZN |+H1 (N)B (t) +H2 (N) t

with H1 (N) = K
√

1 +N2 + 2KNN and H2 (N) = K 1+N2

N + 2KNN . Using the

inequality (a+ b)2m ≤ 22m−1
(
a2m + b2m

)
,

XN (t)2m ≤ 24m−2
(
Z2m
N +G (N)2m t2m

)
+ 22m−1F (N)2mB (t)2m

As E
[
B (t)2m

]
<∞ and E

[
XN (0)2m

]
<∞, then E

[
XN (t)2m

]
<∞.

On the other hand, applying the Itô formula (Theorem 2.17) with H (x) = x2m

to XN (t), we get

XN (t)2m = Z2m
N +

∫ t

a

[
2mXN (s)2m−1GN (s,XN (s))

+m (2m− 1)XN (s)2m−2 F 2
N (s,XN (s))

]
ds

+2m

∫ t

a
XN (s)2m−1 FN (s,XN (s)) dB (s) .
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Observe that the function XN (s)2m−1 FN (s,XN (s)) ∈ L2
ad ([a, b]× Ω). Thus,

E
[∫ t

a
XN (s)2m−1 FN (s,XN (s)) dB (s)

]
= 0.

By the last assertion,

E
[
XN (t)2m

]
= E

[
Z2m
N

]
+

∫ t

a
E
[
2mXN (s)2m−1GN (s,XN (s))

+m (2m− 1)XN (s)2m−2 F 2
N (s,XN (s))

]
ds

≤ E
[
Z2m

]
+ (2m+ 1)mK

∫ t

a
E
[(

1 +X2
N (s)

)
XN (s)2m−2

]
ds

≤ E
[
Z2m

]
+ (2m+ 1)mK

∫ t

a
E
[
1 + 2X2m

N (s)
]
ds

= E
[
Z2m

]
+ (2m+ 1)mK (t− a)

+2 (2m+ 1)mK

∫ t

a
E
[
X2m
N (s)

]
ds

≤ E
[
Z2m

]
+ (2m+ 1)mK (t− a)

+2 (2m+ 1)mk

∫ t

a
e2(2m+1)mK(t−s) [E [Z2m

]
+ (2m+ 1)mK (s− a)] ds

=

[
E
[
Z2m

]
+

1

2

]
e2m(2m+1)K(t−a) − 1

2

≤
[
E
[
Z2m

]
+ 1
]
e2m(2m+1)K(t−a)

Finally, taking limit as N →∞,

E
[
X (t)2m

]
≤
[
E
[
Z2m

]
+ 1
]
e2m(2m+1)K(t−a).

For the second part of the theorem, let observe that

E
[
|X (t)−X (a) |2m

]
= E

[
|
∫ t

a

G (s,X (s)) ds+

∫ t

a

F (s,X (s))dB (s) |2m
]

≤ 22m−1E
[∣∣∣ ∫ t

a

G (s,X (s)) ds
∣∣∣2m]

+22m−1E
[∣∣∣ ∫ t

a

F (s,X (s))dB (s)
∣∣∣2m]

≤ 22m−1 (t− a)2m−1

∫ t

a

E
[
G (s,X (s))2m

]
ds

+22m−1 [m (2m− 1)]m−1 (t− a)m−1

∫ t

a

E
[
F (s,X (s))2m

]
ds

≤ 22m−1 (b− a)m (t− a)m−1

∫ t

a

E
[
G (s,X (s))2m

]
ds

+22m−1 [m (2m− 1)]m−1 (t− a)m−1

∫ t

a

E
[
F (s,X (s))2m

]
ds



41 Stochastic Differential Equations

Thus, there exists a constant K̄ such that

E
[
|X (t)−X (a) |2m

]
≤ K̄ (t− a)m−1

∫ t

a

[
E
[
G (s,X (s))2m + F (s,X (s))2m

]
ds
]

As F 2 (t, x) ≤ K
(
1 + x2

)
and G (t, x) ≤ K1

(
1 + x2

)
, there exists a constant K > 0

such that F 2 (t, x) +G2 (t, x) ≤ K
(
1 + x4

)
. By this,

E
[
|X (t)−X (a) |2m

]
≤ K̄ (t− a)m−1

∫ t

a

[
E
[
G (s,X (s))2m + F (s,X (s))2m

]
ds
]

≤ K̄ (t− a)m−1
∫ t

a

[
2KmE

[[
1 +X (s)4

]m]
ds
]

≤ 2mK̄Km (t− a)m−1
∫ t

a

[
1 + E

[
X (s)4m

]]
ds

≤ 2mK̄Km (t− a)m

+2mK̄Km (t− a)m−1 [E [Z4m
]

+ 1
] ∫ t

a
eC(s−a)ds

= 2mK̄Km (t− a)m

+2mK̄Km (t− a)m
[
E
[
Z4m

]
+ 1
] eC(t−a) − 1

C (t− a)

≤ 2mK̄Km (t− a)m

+2mK̄Km (t− a)m
[
E
[
Z4m

]
+ 1
]
eC(t−a)

≤ 2m+1K̄Km (t− a)m
[
1 + E

[
Z4m

]]
eC(t−a)

with C = 4m (4m+ 1)K. And finally, K̃ = 2m+1K̄Km.

Remark 5. In the case that the coefficients F (t, x) and G (t, x) satisfies the condition
(3.4):

F (t, x)2 +G (t, x)2 ≤ K
(
1 + x2

)
,

then there exists a constant K̃ depending of K, m, a and b for which

E
[
[X (t)− Z]2m

]
≤ K̃

[
E
[
Z2m

]
+ 1
]

(t− a)m e2m(2m+1)K(t−a). (3.19)

3.2 Global solutions for SDE and Feller Criteria

Let F (t, x) , G (t, x) be functions defined on [t0,∞) × R with −∞ < t0 < ∞. If
the assumptions of the existence and uniqueness Theorem 3.4 hold on every finite
subinterval [t0, b] ⊂ [t0,∞), then the SDE

dX (t) = F (t,X (t)) dB (t) +G (t,X (t)) dt

has a unique solution X (t) defined on [t0,∞). Such a solution is called a global
solution.
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Corollary 3.7. Consider the autonomous stochastic differential equation

dX (t) = F (X (t)) dB (t) +G (X (t)) dt. (3.20)

For every initial value Z, independent of the Brownian motion B (t) − B (t0) , t ∈
[t0,∞), the SDE (3.20) has a unique continuous global solution X (t) , t ∈ [t0,∞)
such X (t0) = Z if the following Lipschitz condition is satisfied: there exists a positive
constant K such that,

|F (x)− F (y) |+ |G (x)−G (y) | ≤ K|x− y| ∀ x, y ∈ R.

The growth condition of F and G follows from this global Lipschitz condition
(only we fix y = y0).

In the case the global Lipschitz condition is not satisfied, then the solution
X (t) , t ∈ [t0,∞) can exhibit a phenomena known as explosion.

Definition 3.8. A random time τ ∈ [t0,∞) is a explosion if P [X (τ) =∞] = 1
or P [X (τ) = −∞] = 1. In this case, X (t) = ∞ or X (t) = −∞ for all t ≥ τ ,
depending on the case.

There exists a result about the existence and uniqueness of solutions for the
SDE (3.20), up to a time-explosion, in the case of the coefficients are continuous
functions.

Theorem 3.9. Let consider the autonomous SDE

dX (t) = F (X (t)) dB (t) +G (X (t)) dt

with initial condition Z. If the coefficient F (x) , G (x) are continuously differentiable
functions on R, then there exists a global solution of the SDE until an explosion τ
in the interval (t0, τ) with t0 < τ ≤ ∞.

For a proof of this theorem, see [16, Section 3.3 p. 54].

The Feller Criterion for Explosions in SDE

The so-called Feller test is a criterion to determine if a explosion occurs in finite or
infinite time. For the statement of this test, let suppose that X (t) , t ∈ [t0,∞) is a
solution of the autonomous SDE

dX (t) = F (X (t)) dB (t) +G (X (t)) dt (3.21)

with initial condition X (t0) = x ∈ (a, b) ⊆ R, and the coefficients F (x) , G (x)
satisfy the assumptions of the existence and uniqueness theorem 3.4 on [t0,∞)×R.

Let introduce two conditions on the coefficients of the SDE (3.21).

• non-degeneracy (ND): F 2 (x) > 0 for all x ∈ R.
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• local integrability (LI): for all x ∈ R there exists an ε > 0 such that∫ x+ε

x−ε

1 + |G (y) |
F 2 (y)

dy <∞.

Under these assumptions, for a fixed number c ∈ R define the scale function

S (x) :=

∫ x

c
exp

[
−2

∫ y

c

G (z)

F 2 (z)
dz

]
dy; x ∈ R.

The derivative S′ is continuous and strictly positive. Thus, S′′ also exists and
satisfies that

S′′ (x) = −2
G (x)

F 2 (x)
S′ (x) .

Remark 6. The value of c does not determine S (±∞) is finite or not.

Let
Ta,b := inf{t ≥ t0; X (t) /∈ (a, b)}; −∞ ≤ a < b ≤ ∞

be the exit time from (a, b), and M (x) be the solution of the differential equation

1

2
F 2 (x)M ′′ (x) +G (x)M ′ (x) = −1, a < x < b, (3.22)

M (a) = M (b) = 0.

Such a solution M (x) can be expressed, in terms of the scale function, as follows:

M (x) =
S (x)− S (a)

S (b)− S (a)

∫ b

a

S (b)− S (y)

S′ (y)F 2 (y)
dy −

∫ x

a

S (x)− S (y)

S′ (y)F 2 (y)
dy.

If we apply the Itô formula to the process M (X (t)) , t ≥ t0, we obtain

M (X (t ∧ Ta,b)) = M (x)− [t ∧ Ta,b − t0] +

∫ t∧Ta,b

t0

M ′ (X (s))F (X (s)) dB (s) .

Taking expectation, we see that

E [t ∧ Ta,b] = M (x) + t0 − E [M (X (t ∧ Ta,b))] ≤M (x) + t0 <∞,

and letting t → ∞ we obtain E [Ta,b] ≤ M (x) < ∞. In other words, X (t) , t ∈
[t0,∞) exits from every bounded subinterval of R in finite expected time. Moreover,
E [Ta,b] = M (x).

In the same way, if we apply the Itô formula to the process S (X (t)) , t ≥ t0, we
obtain that S (x) = E [S (X (t ∧ Ta,b))] and

S (x) = E [S (X (Ta,b))] = S (a)P [X (Ta,b) = a] + S (b)P [X (Ta,b) = b] .

The two probabilities in the last equation add up to one, and thus

P [X (Ta,b) = a] =
S (b)− S (x)

S (b)− S (a)
; P [X (Ta,b) = b] =

S (x)− S (a)

S (b)− S (a)
.
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Proposition 3.10. Assume that conditions ND and LI are satisfied for the functions
F (x) and G (x) and let X (t) , t ≥ t0 be a global solution of the SDE

dX (t) = F (X (t)) dB (t) +G (X (t)) dt (3.23)

with initial condition X (t0) = x ∈ (a, b). Let S be the scale function, S (±∞) :=
limx→±∞ S (x) and τ the explosion-time of X (t) , t ≥ t0. We distinguish four cases:

(a) If S (−∞) = −∞ and S (∞) =∞, then

P [τ =∞] = P

[
sup

t0≤t<∞
X (t) =∞

]
= P

[
inf

t0≤t<∞
X (t) = −∞

]
= 1.

In particular, the process X (t) , t ∈ [t0,∞) is recurrent: for every y ∈ R, we
have

P [X (t) = y; some t0 ≤ t <∞] = 1.

(b) If S (−∞) > −∞ and S (∞) =∞, then

P

[
sup

t0≤t<τ
X (t) <∞

]
= P

[
lim
t→τ+

X (t) = −∞
]

= 1.

(c) If S (−∞) = −∞ and S (∞) <∞, then

P

[
inf

t0≤t<τ
X (t) > −∞

]
= P

[
lim
t→τ+

X (t) =∞
]

= 1.

(d) If S (−∞) > −∞ and S (∞) <∞, then

P

[
lim
t→τ+

X (t) = −∞
]

= 1− P
[

lim
t→τ+

X (t) =∞
]

=
S (∞)− S (x)

S (∞)− S (−∞)
.

Remark 7. Unless cases (b), (c) and (d) does not make no claim concerning the
finiteness of τ , it is possible to find examples in each one such that P [τ =∞] = 1.
For cases (b) and (c), the Brownian motion with drift X (t) = Z+µt+σB (t) , t ≥ t0
is solution of the SDE

dX (t) = µdt+ σdB (t) , X (t0) = Z,

and it holds that P [X (τ) =∞] = 1 if µ > 0 and P [X (τ) = −∞] = 1 if µ > 0. In
contrast, if F (x) = µ and G (x) = sgn (x), then the SDE

dX (t) = sgn (X (t)) dt+ σdB (t) , X (t0) = Z

has a unique non-explosive strong solution X (t) , t ≥ t0 (see [12, p.342, Remark
5.18]).
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The proof of this proposition is given in [12, Proposition 5.22 p.345]. In order
to find necessary and sufficient conditions to guarantee that P [τ =∞] = 1, we will
use a result from ordinary differential equations. For that, define recursively the
sequence {un (x)}∞n=0 of real-valued functions on R by setting u0 = 1 and

un (x) = 2

∫ x

c
S′ (y)

[∫ y

c

un−1 (z)

S′ (z)F 2 (z)
dz

]
dy

where, as before, c is a fixed number in R. In particular, we set for x ∈ R:

v (x) := u1 (x) = 2

∫ x

c

S (x)− S (y)

S′ (y)F 2 (y)
dy.

Lemma 3.11. Assume that conditions ND and LI are satisfied for the functions
F (x) and G (x). The series

u (x) :=
∞∑
n=0

un (x) ; x ∈ R

converges uniformly on compact subsets of R and u (x) is a differentiable function
with absolutely continuous derivative on R. Furthermore, u is strictly increasing for
x > c, strictly decreasing for x < c, satisfies

1

2
F 2 (x)u′′ (x) +G (x)u′ (x) = u (x) ; a.s. x ∈ R

u(c) = 1, u′(c) = 0,

and the inequalities
1 + v (x) ≤ u (x) ≤ ev(x); ∀x ∈ R.

The proof of this lemma is given in [12, Lemma 5.26, p.347]. Now, we present
the Feller test for explosions.

Theorem 3.12. Let F (x) , G (x) defined over R that satisfies conditions (ND) and
(LI) and let X (t) , t ≥ t0 be a global solution of the SDE

dX (t) = F (X (t)) dB (t) +G (X (t)) dt (3.24)

with initial condition X (t0) = x ∈ R. Then, P [τ =∞] = 1 or P [τ =∞] < 1,
according to whether v (−∞) = v (∞) =∞ or not.

Proof. Let Zn (t) := u (X (t ∧ τn ∧ T−n,n)) where

τn := inf{t ≥ t0;

∫ t

t0

F 2 (X (s)) ds ≥ n}.

By the Itô formula,

Zn (t) = Zn (t0) +

∫ t∧τn∧T−n,n

t0

u (X (s)) ds+

∫ t∧τn∧T−n,n

t0

u′ (X (s))F (X (s)) dB (s) .
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Next, Mn (t) := e−(t∧τn∧T−n,n)Zn (t) has the representation

Mn (t) = Mn (t0) +

∫ t∧τn∧T−n,n

t0

e−su′ (X (s))F (X (s)) dB (s) .

Let define M (t) := limn→∞Mn (t) = e−(t∧τ)u (X (t ∧ τ)). Thus, the process

M (t) , t ≥ t0

is a non-negative super martingale and this implies that

M (∞) := lim
t→∞

M (t)

exists and it is finite, almost surely.

• Suppose that v (−∞) = v (∞) = ∞. Then, the inequality (3.11), u (−∞) =
u (∞) =∞. On the other hand, M (∞) =∞ a.s. on the event [τ <∞]. Thus
implies that P [τ <∞] = 0.

• Now suppose that v (∞) <∞. By the inequality (3.11), u (∞) <∞. Without
lost of generality, let assume that c < x and define Tc := inf{t ≥ t0;X (t) = c}.
The process

M (t ∧ Tc) = e−(t∧τ∧Tc)u (X (t ∧ τ ∧ Tc)) , t0 ≤ t <∞,

is a bounded martingale, which therefore converges almost surely as t → ∞.
Thus,

u (x) = E
[
e−(τ∧Tc)u (X (τ ∧ Tc))

]
= u (∞)E

[
e−τ1[τ<Tc]

]
+u (c)E

[
e−Tc1[Tc<τ ]

]
.

Now, if P [τ =∞] = 1, it follows that u (x) = u (c)E
[
e−Tc

]
≤ u (c), which

contradict the hypothesis of strictly increasing for x > c. Then, P [τ =∞] < 1.

3.3 Properties of the solution of SDE

One of the principal families of stochastic processes are the Markov processes.

Definition 3.13. A stochastic process X (t) , t ∈ [a, b] defined on a filtered space
(Ω,F, {Ft}a≤t≤b, P ) taking values in R is said to be a Markov process if it satisfies
the so-called Markov property holds:

P [X (t) ∈ A|Fs] = P [X (t) ∈ A|X (s)] ∀s ≤ t, A ∈ B (R) .

If in addition, there exists a function P (s, x, t, A) satisfying the next conditions

• P (s, x, t, A) is a Borel function of x,
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• P (s, x, t, A) is measurable with respect to A for fixed s, t, x,

•
∫
P (s, x, u, dy)P (u, y, t, A) = P (s, x, t, A) for all x and a ≤ s < u < t ≤ b,

such that
P [X (t) ∈ A|Fs] = P (s,X (s) , t, A) ,

for all x ∈ R, a ≤ s < t ≤ b and A ∈ B (R), then the function P (s, x, t, A) is called
the transition probability of the Markov process X (t) , t ∈ [a, b].

Theorem 3.14. Let X (t) , t ∈ [a, b] be a Markov process and P (s, x, t, A) its tran-
sition probability function. If H (t, x) is strictly monotone in x for all t ∈ [a, b], then
H (t,X (t)) , t ∈ [a, b] is also a Markov process and its transition probability

P̃ (s, x, t, A)

satisfies that
P̃ (s, x, t, A) = P

(
s,H−1 (s, x) , t,H−1 (t, A)

)
where H−1 (s, x) is the inverse of H (t, x) in x and H−1 (t, A) = {y ∈ R |H (t, y) ∈
A}.

Proof. First, let show that Y (t) = H (t,X (t)) , t ∈ [a, b] is a Markov process. For
that, let Gt := σ (Y (s) , a ≤ s ≤ t). Thus,

P [Y (t) ∈ A|Gs] = P [H (t,X (t)) ∈ A|Gs]
= P

[
H−1 (t,H (t,X (t))) ∈ H−1 (t, A) |Fs

]
= P

[
X (t) ∈ H−1 (t, A) |Fs

]
= P

[
X (t) ∈ H−1 (t, A) |X (s)

]
= P

[
H−1 (t,H (t,X (t))) ∈ H−1 (t, A) |X (s)

]
= P [H (t,X (t)) ∈ A|H (s,X (s))]

= P [Y (t) ∈ A|Y (s)]

Moreover, if P̃ (s, x, t, A) is the transition probability function of Y (t) = H (t,X (t)) , t ∈
[a, b], then

P̃ (s, Y (s) , t, A) = P [Y (t) ∈ A|Gs]
= P

[
H−1 (t, Y (t)) ∈ H−1 (t, A) |Fs

]
= P

[
X (t) ∈ H−1 (t, A) |Fs

]
= P

(
s,X (s) , t,H−1 (t, A)

)
= P

(
s,H−1 (s, Y (s)) , t,H−1 (t, A)

)
as we want to show.

In the case of stochastic differential equations, if X (t) , t ∈ [a, b], is a solution of
the SDE

dX (t) = F (t,X (t)) dB (t) +G (t,X (t)) dt (3.25)

with initial condition Z and coefficients F and G satisfying the assumptions of
Theorem 3.4, then X (t) , t ∈ [a, b] belongs to the family of Markov process, as it is
given in [8, Thm. 1, p.67].
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Theorem 3.15. The solution X (t) , t ∈ [a, b] of the SDE (3.25) is a Markov process,
whose transition probability is defined by

P (s, x, t, A) := P [Xs,x (t) ∈ A] , (3.26)

where Xs,x (t) , t ∈ [s, b] is a solution of the SDE

Xs,x (t) = x+

∫ t

s
F (u,Xs,x (u)) dB (u) +

∫ t

s
G (u,Xs,x (u)) du (3.27)

on the interval [t, b].

An important subfamily of Markov processes are the diffusion processes, which
are defined below.

Definition 3.16. A Markov process X (t) , t ∈ [a, b] with transition probability
P (s, x, t, A) is said to be a diffusion process if the following properties hold:

1. for any ε > 0 and a ≤ t ≤ b, x ∈ R,

lim
h→0

1

h

∫
|x−y|>ε

P (t, x, t+ h, dy) = 0

2. there exist functions A (t, x) and B (t, x) such that for all ε > 0, t ∈ T and
x ∈ R,

(a)

lim
h→0

1

h

∫
|x−y|≤ε

(y − x)P (t, x, t+ h, dy) = A (t, x)

(b)

lim
h→0

1

h

∫
|x−y|≤ε

(y − x)2 P (t, x, t+ h, dy) = B (t, x)

The functionsA (t, x) andB (t, x) are called the coefficient of displacement(drift)
and the coefficient of diffusion, respectively.

Remark 8. For X (t) , t ∈ [a, b] to be a diffusion it is sufficient that its transition
probability satisfy the following assumptions:

1* for any δ > 0,

lim
h→0

1

h

∫
R
|x− y|2+δP (t, x, t+ h, dy) = 0 (3.28)

2* there exists functions A (t, x) and B (t, x) such that for all t ∈ T and x ∈ R,

(a)

lim
h→0

1

h

∫
R

(y − x)P (t, x, t+ h, dy) = A (t, x)
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(b)

lim
h→0

1

h

∫
R

(y − x)2 P (t, x, t+ h, dy) = B (t, x)

In fact, if 1* holds, then∫
|y−x|>ε

P (t, x, t+ h, dy) =

∫
|y−x|>ε

|y − x|2+δ

|y − x|2+δ
P (t, x, t+ h, dy)

≤
∫
|y−x|>ε

|y − x|2+δ

ε2+δ
P (t, x, t+ h, dy)

≤ 1

ε2+δ

∫
|y−x|>ε

|y − x|2+δP (t, x, t+ h, dy)

≤ 1

ε2+δ

∫
R
|y − x|2+δP (t, x, t+ h, dy) .

Moreover, condition 2* implies that∣∣∣ ∫
|y−x|>ε

(y − x)P (t, x, t+ h, dy)
∣∣∣ ≤ ∫

|y−x|>ε
|y − x|P (t, x, t+ h, dy)

=

∫
|y−x|>ε

|y − x|2+δ

|y − x|1+δ
P (t, x, t+ h, dy)

≤
∫
|y−x|>ε

|y − x|2+δ

ε1+δ
P (t, x, t+ h, dy)

≤ 1

ε1+δ

∫
|y−x|>ε

|x− y|2+δP (t, x, t+ h, dy)

≤ 1

ε1+δ

∫
R
|y − x|2+δP (t, x, t+ h, dy) ,

and also that∫
|y−x|>ε

(y − x)2 P (t, x, t+ h, dy) =

∫
|y−x|>ε

|y − x|2+δ

|y − x|δ
P (t, x, t+ h, dy)

≤
∫
|y−x|>ε

|y − x|2+δ

εδ
P (t, x, t+ h, dy)

≤ 1

εδ

∫
|y−x|>ε

|x− y|2+δP (t, x, t+ h, dy)

≤ 1

εδ

∫
R
|y − x|2+δP (t, x, t+ h, dy) .

Thus, if equation (3.28) is satisfied, then the definition of the diffusion is satisfied.

Theorem 3.17. Let H (t, x) be twice continuously differentiable and monotone in
x and continuously differentiable in t and let X (t) , t ∈ [a, b] be a diffusion. Then
the process H (t,X (t)) , t ∈ [a, b] is also a diffusion with the drift coefficient is

Ã (t, x) = Ht

(
t,H−1 (t, x)

)
+A

(
t,H−1 (t, x)

)
Hx

(
t,H−1 (t, x)

)
+

1

2
B
(
t,H−1 (t, x)

)
Hxx

(
t,H−1 (t, x)

)
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and the diffusion coefficient is

B̃ (t, x) = B
(
t,H−1 (t, x)

) [
Hx

(
t,H−1 (t, x)

)]2
(3.29)

Proof. By Theorem 3.14, H (t,X (t)) is a Markov process. Now, let show Remark 8
is satisfied. Let u = H−1 (t, x) and v = H−1 (t+ h, y). Then,

1

h

∫
|y−x|>ε

P̃ (t, x, t+ h, dy) =
1

h

∫
|y−x|>ε

P
(
t,H−1 (t, x) , t+ h,H−1 (t+ h, dy)

)
=

1

h

∫
|H(t+h,v)−H(t,u)|>ε

P (t, u, t+ h, dv) =
o (h)

h
→ 0

because X (t) is a diffusion. Next, the expansion on Taylor series of H (t, x) around
(t+ h, v) is

H (t+ h, v) = H (t, u) +
∂

∂t
H (t, u)h+

∂

∂u
H (t, u) (v − u)

+
1 + o (ε)

2

∂2

∂u2
H (t, u) (v − u)2 + o (h)

with |H (t+ h, v)−H (t, u) | ≤ ε. Then,

∫
|y−x|≤ε

(y − x) P̃ (t, x, t+ h, dy) =

∫
|y−x|≤ε

(y − x)P
(
t,H−1 (t, x) , t+ h,H−1 (t+ h, dy)

)
=

∫
|H(t+h,v)−H(t,u)|≤ε

(H (t+ h, v)−H (t, u))P (t, u, t+ h, dv)

=

[
o (h) + h

∂

∂t
H (t, u)

] ∫
|H(t+h,v)−H(t,u)|≤ε

P (t, u, t+ h, dv)

+h
∂

∂u
H (t, u)

∫
|H(t+h,v)−H(t,u)|≤ε

(v − u)P (t, u, t+ h, dv)

+h
1 + o (ε)

2

∂2

∂u2
H (t, u)

∫
|H(t+h,v)−H(t,u)|≤ε

(v − u)2 P (t, u, t+ h, dv)

Taking limits in both sides of the last equation, we hold that

Ã (t, x) = lim
h→0

1

h

∫
|y−x|≤ε

(y − x) P̃ (t, x, t+ h, dy)

=
∂

∂t
H (t, u) +A (t, u)

∂

∂u
H (t, u) +

1

2
B (t, u)

∂2

∂u2
H (t, u)

=
∂

∂t
H
(
t,H−1 (t, x)

)
+A

(
t,H−1 (t, x)

) ∂

∂x
H
(
t,H−1 (t, x)

)
+

1

2
B
(
t,H−1 (t, x)

) ∂2

∂x2
H
(
t,H−1 (t, x)

)
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Analogously,

B̃ (t, x) = lim
h→0

1

h

∫
|y−x|≤ε

(y − x)2 P̃ (t, x, t+ h, dy)

= lim
h→0

1

h

∫
|y−x|≤ε

(y − x)2 P
(
t,H−1 (t, x) , t+ h,H−1 (t+ h, dy)

)
= lim

h→0

1

h

∫
|H(t+h,v)−H(t,u)|≤ε

[H (t+ h, v)−H (t, u)]2 P (t, u, t+ h, dv)

= lim
h→0

1

h

∫
|H(t+h,v)−H(t,u)|≤ε

[
(1 + o (ε))

∂

∂u
H (t, u) (v − u) + o (h)

]2
P (t, u, t+ h, dv)

=

[
∂

∂u
H (t, u)

]2
lim
h→0

(1 + o (ε))2

h

∫
|H(t+h,v)−H(t,u)|≤ε

(v − u)2 P (t, u, t+ h, dv)

= B (t, u)

[
∂

∂u
H (t, u)

]2
= B

(
t,H−1 (t, x)

) [ ∂
∂x
H
(
t,H−1 (t, x)

)]2

The assumptions of Remark 8 provides an easy way to show if a Markov process
X (t) , t ∈ [a, b] is a diffusion process. The next theorem shows that a solution of a
SDE, under certain conditions, is a diffusion process.

Theorem 3.18. Let F (t, x) and G (t, x) be continuous in both arguments and as-
sume that

(a) for all t ∈ [a, b] and each N > 0, there exists LN > 0 such that

|F (t, x)− F (t, y) |+ |G (t, x)−G (t, y) | ≤ LN |x− y|

for (x, y) ∈ [−N,N ]× [−N,N ],

(b) for all t ∈ [a, b] , x ∈ R, there exists K > 0 such that

G (t, x) + xG (t, x) + |F (t, x) |2 ≤ K
(
1 + x2

)
.

Then the solution X (t) , t ∈ [a, b] of (3.25) is a diffusion process with displacement
coefficient A (t, x) = G (t, x) and diffusion coefficient B (t, x) = F 2 (t, x).

Proof. Let Xt,x (s) be as in Theorem 3.15. Then, by Theorem 3.6, there exists a
constant K, independent of t and x such that∫

(y − x)4 P (t, x, t+ h, dy) = E
[
|Xt,x (t+ h)−Xt,x (t) |4

]
= E

[
|Xt,x (t+ h)− x|4

]
≤ Kh2

(
1 + x8

)
Thus,

lim
h→0

1

h

∫
(y − x)4 P (t, x, t+ h, dy) ≤ lim

h→0
Kh

(
1 + x8

)
= 0.
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Next,

1

h
E [Xt,x (t+ h)− x] =

1

h

∫ t+h

t
E [G (u,Xt,x (u))] du

=

∫ 1

0
E [G (t+ sh,Xt,x (t+ sh))] ds.

Since G (t+ sh,Xt,x (t+ sh))→ G (t, x) a.s., as h→ 0, then

G (t+ sh,Xt,x (t+ sh)) ≤ K
(

1 +Xt,x (t+ sh)2
)

and
∫ 1

0 E
[(

1 +Xt,x (t+ sh)2
)]
ds < ∞. Thus, the hypothesis of the dominated

convergence theorem of Lebesgue is satisfied and

lim
h→0

∫ 1

0
E [G (t+ sh,Xt,x (t+ sh))] ds = G (t, x) .

On other hand, the Itô formula 2.19 for H (x) = x2 yields

E
[
|Xt,x (t+ h)− x|2

]
= E

[
Xt,x (t+ h)2 − 2xXt,x (t+ h) + x2

]
= E

[
Xt,x (t+ h)2

]
− x2 − 2x (E [Xt,x (t+ h)]− x)

= E
[∫ t+h

t

[
2Xt,x (u)G (u,Xt,x (u)) + F 2 (u,Xt,x (u))

]
du

]
+2E

[∫ t+h

t
Xt,x (u)F (u,Xt,x (u)) dB (u)

]
−2x [G (t, x)h+ o (h)] .

In an analogous manner, we see that

lim
h→0

1

h
E
[
|Xt,x (t+ h)− x|2

]
= 2 lim

h→0

∫ 1

0

E [Xt,x (t+ sh)G (t+ sh,Xt,x (t+ sh))] ds

+ lim
h→0

∫ 1

0

E
[
F 2 (t+ sh,Xt,x (t+ sh))

]
ds− 2xG (t, x)

= 2xG (t, x) + F 2 (t, x)− 2xG (t, x) = F 2 (t, x) .

3.4 Boundaries classification of a diffusion processes

Let X (t) , t ∈ [t0,∞) be a global solution up to an explosion-time τ of the au-
tonomous SDE

dX (t) = F (X (t)) dB (t) +G (X (t)) dt, (3.30)

with initial condition Z, and suppose the coefficients F and G satisfies the assump-
tions of theorem 3.18. Recall the scale function S (x) and the exit time Ta,b studied
in Section 3.2.
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In this section, we present a classification about which states can be attached by
the process and if that states can be handle in finite time.

Attracting states. Let start the discussion about if a state can be attached or
not.

Definition 3.19. Let l ∈ R and b ∈ (l,∞). We said

• l is an attracting state if P [X (Tl,b) = l|Z = x] > 0 for all x ∈ (l, b).

• l is a non-attracting state if P [X (Tl,b) = l|Z = x] = 0 for all x ∈ (l, b).

The next proposition characterizes the behaviour of the process X (t) , t ≥ t0
near l.

Proposition 3.20. (a) If lima→l+
∫ b
a S
′ (u) du < ∞ for some b > l, then l is an

attracting state;

(b) If lima→l+
∫ b
a S
′ (u) du =∞ for some b > l, then l is a non-attracting state.

Proof. By equation (3.2), we hold that

P [X (Ta,b) = a|Z = x] =

∫ b
x S
′ (u) du∫ b

a S
′ (u) du

and also,

P [X (Tl,b) = l|Z = x] = lim
a→l+

P [X (Ta,b) = a|Z = x]

= lim
a→l+

∫ b
x S
′ (u) du∫ b

a S
′ (u) du

=

[∫ b

x
S′ (u) du

]
lim
a→l+

1∫ b
a S
′ (u) du

.

If lima→l+
∫ b
a S
′ (u) du <∞, then

∫ b
x S
′ (u) du <∞ and thus, P [X (Tl,b) = l|Z = x] >

0. On the other hand, if lima→l+
∫ b
a S
′ (u) du = ∞, then lima→l+

1∫ b
a S
′(u)du

= 0 and

thus, P [X (Tl,b) = l|Z = x] = 0.

The same discussion can be presented for a right state r > x.

Definition 3.21. Let r ∈ R and a ∈ (−∞, a). We said

• r is an attracting state if P [X (Ta,r) = r|Z = x] > 0 for all x ∈ (a, r).

• r is a non-attracting state if P [X (Ta,r) = r|Z = x] = 0 for all x ∈ (a, r).

Moreover, we hold the characterization oh the behaviour of the process X (t) , t ≥
t0 near r.
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Proposition 3.22. (a) If limb→r−
∫ b
a S
′ (u) du < ∞ for some a < r, then r is an

attracting state;

(b) If limb→r−
∫ b
a S
′ (u) du =∞ for some a < r, then r is a non-attracting state.

Attainable states. Now, let discuss about if a state can be reached in finite
time or not.

Definition 3.23. Let l ∈ R and b ∈ (l,∞). We said

• l is an attainable state if for all x ∈ (l, b), E
[
Tl,b

∣∣∣Z = x
]
<∞.

• l is an unattainable state if for all x ∈ (l, b), E
[
Tl,b

∣∣∣Z = x
]

=∞.

The next proposition characterizes the reachability of the state l by the process
X (t) , t ≥ t0.

Proposition 3.24. (a) If l is an attracting state and

lim
a→l+

∫ x

a

S (z)− S (a)

S′ (z)F 2 (z)
dz <∞, (3.31)

for some x > l, then l is an attainable state.

(b) If l is an attracting and

lim
a→l+

∫ x

a

S (z)− S (a)

S′ (z)F 2 (z)
dz =∞ (3.32)

for some x > l, then l is an unattainable state.

(c) If l is a non-attracting state, then l is an unattainable state.

Proof. Recall the function M (x) that is solution of the ordinary differential equation

(3.22). This functions satisfies the equality M (x) = E
[
Ta,b

∣∣∣Z = x
]
. By straightfor-

ward calculus, we hold that,

M (x) = 2
S (x)− S (a)

S (b)− S (a)

∫ b

x

S (b)− S (z)

S′ (z)F 2 (z)
dz + 2

S (b)− S (x)

S (b)− S (a)

∫ x

a

S (z)− S (a)

S′ (z)F 2 (z)
dz

(3.33)
Thus,

E
[
Tl,b

∣∣∣Z = x
]

= lim
a→l+

E
[
Ta,b

∣∣∣Z = x
]

= 2 lim
a→l+

S (x)− S (a)

S (b)− S (a)

∫ b

x

S (b)− S (z)

S′ (z)F 2 (z)
dz

+2 lim
a→l+

S (b)− S (x)

S (b)− S (a)

∫ x

a

S (z)− S (a)

S′ (z)F 2 (z)
dz

= 2

∫ b

x

S (b)− S (z)

S′ (z)F 2 (z)
dz lim

a→l+
S (x)− S (a)

S (b)− S (a)

+2 lim
a→l+

S (b)− S (x)

S (b)− S (a)

∫ x

a

S (z)− S (a)

S′ (z)F 2 (z)
dz (3.34)
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In case (a), the r.h.s. of (3.34) is finite. This implies that E
[
Tl,b

∣∣∣Z = x
]
< ∞

and so, we conclude that l is an attainable state. In case (b), the second term of the

r.h.s. of (3.34) is infinite and so, E
[
Tl,b

∣∣∣Z = x
]

= ∞ and we conclude that l is an

unattainable state. For case (c), we hold that

E
[
Tl,b

∣∣∣Z = x
]

= 2

∫ b

x

S (b)− S (z)

S′ (z)F 2 (z)
dz

As l is a non-attracting state, S (b)− S (z) =∞ for all z ∈ (l, b). This implies that

E
[
Tl,b

∣∣∣Z = x
]

=∞ because S′ (z)F 2 (z) > 0 for all z ∈ R.

In the same way, we present the definition of attainable right state r and its
characterization.

Definition 3.25. Let r ∈ R and a ∈ (−∞, r). We said

• r is an attainable state if for all x ∈ (a, r), E
[
Ta,r

∣∣∣Z = x
]
<∞.

• r is an unattainable state if for all x ∈ (a, r), E
[
Ta,r

∣∣∣Z = x
]

=∞.

Proposition 3.26. (a) If r is an attracting state, then r is an attainable state if

lim
a→r−

∫ a

x

S (a)− S (z)

S′ (z)F 2 (z)
dz <∞

for some x < r.

(b) If r is an attracting, then r is an unattainable state if

lim
a→r−

∫ a

x

S (a)− S (z)

S′ (z)F 2 (z)
dz =∞

for some x < r.

(c) If r is a non-attracting state, then r is an unattainable state.

Let finalize this chapter with the next proposition.

Proposition 3.27. Let H (x) be twice continuously differentiable and monotone in
x and let X (t) , t ∈ [t0,∞) be the solution of the SDE (3.30) that is a diffusion. We
hold the next cases:

• If l is an attracting state of the process X (t) , t ∈ [t0,∞), then H (l) is an
attracting state of the process H (X (t)) , t ∈ [t0,∞).

• If l is a non-attracting state of the process X (t) , t ∈ [t0,∞), then H (l) is a
non-attracting state of the process H (X (t)) , t ∈ [t0,∞).

• If l is an attainable state of the process X (t) , t ∈ [t0,∞), then H (l) is an
attainable state of the process H (X (t)) , t ∈ [t0,∞).
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• If l is an unattainable state of the process X (t) , t ∈ [t0,∞), then H (l) is an
unattainable state of the process H (X (t)) , t ∈ [t0,∞).

Proof. As H (x) is twice continuously differentiable and monotone function, then
H−1 exists. By this,[

H
(
X
(
TH(l),H(b)

))
= H (l) |Z = x

]
= [X (Tl,b) = l|Z = x]

and so,

P
[
H
(
X
(
TH(l),H(b)

))
= H (l) |Z = x

]
= P [X (Tl,b) = l|Z = x] .

Let consider that l is an attracting state. Then,

P [H (X (Tl,b)) = H (l) |Z = x] = P [X (Tl,b) = l|Z = x] > 0

and we conclude that H (l) is an attracting state. On the other hand, if l is a
non-attracting state, then

P
[
H
(
X
(
TH(l),H(b)

))
= H (l) |Z = x

]
= P [X (Tl,b) = l|Z = x] = 0

which implies that H (l) is a non-attracting state.

By other hand, let observe that TH(l),H(b) = Tl,b because H (x) is monotone.
Thus,

E
[
TH(l),H(b)|Z = x

]
= E [Tl,b|Z = x] .

Now, if l is an attainable state, then

E
[
TH(l),H(b)

∣∣∣Z = x
]

= E
[
Tl,b

∣∣∣Z = x
]
<∞,

implying that H (l) is an attainable state of the process H (X (t)) , t ≥ t0. In the
same way, if l is an unattainable state, then H (l) is an unattainable state of the
process H (X (t)) , t ≥ t0 because

E
[
TH(l),H(b)

∣∣∣Z = x
]

= E
[
Tl,b

∣∣∣Z = x
]

=∞.



Chapter 4

The controversy: Itô or Stratonovich?

Introduction

This chapter discusses the controversy Itô vs Stratonovich for a class of population
growth models following Braumann’s papers [3, 4]. In [4], Braumann resolves the
controversy in two cases: in the first one it is assumed the population model has a
density-independent average growth rate, while in the section one it is assumed the
average growth rate is density-dependent. In [3], Braumann extends the analysis to
population models with harvesting.

4.1 The controversy

Consider a population that evolves without interacting with other species but being
subject to environmental noise or random perturbations. To model the popula-
tion dynamic, one can begin assuming that the population evolves according to the
ordinary differential equation

dN (t) = r (t)N (t) dt

with initial condition N (0) = N0, where N (t) is the population size and r (t) is the
(per-capita or relative) growth rate of the population N (t) at time t ≥ 0. Next, to
take into account the random perturbations, one can assume that the growth rate
has the form

r (t) = g (t) + σ (t)W (t) (4.1)

where g : R+ → R and σ : R+ → R+ are “deterministic” functions, and the process
W (t) , t ≥ 0 is formed by independent identically distributed random variables with
zero mean and finite variance. Thus, the population model becomes in

dN (t) = g (t)N (t) dt+ σ (t)N (t)W (t) dt, (4.2)

which, proceeding formally, can be rewritten as

N (t) = N (0) +

∫ t

0
g (s)N (s)ds+

∫ t

0
σ (s)N (s)W (s)ds. (4.3)

Concerning to the last equations two comments are in order. On one hand, it is well
known the process W (t) , t ≥ 0 does not exists as a proper stochastic process and
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it is formally regarded as the “derivative” of the Brownian motion B (t) , t ≥ 0 (for
more details about proper stochastic process, see [7]); this latter fact is expressed
by writing

dB (t) = W (t) dt.

Thus, equations (4.2) and (4.3) now read as

dN (t) = g (t)N (t) dt+ σ (t)N (t) dB (t) , (4.4)

and

N (t) = N (0) +

∫ t

0
g (s)N (s)ds+

∫ t

0
σ (s)N (s) dB (s) . (4.5)

On the other hand, the term ∫ t

0
σ (s)N (s) dB (s) (4.6)

is usually interpreted either as an Itô integral or as a Stratonovich integral; thus,
the properties of the process N (t) , t ≥ 0, will obviously depend on the integral
used. This leads us to the core of the controversy: for instance, one can wonder
whether the Itô calculus describes better the long-term population behaviour than
the Stratonovich calculus, or vice versa.

We show below how these calculi predicts different faith for the population
analysing a particular case of model (4.4) or (4.5). To avoid confusions, the custom-
ary notation (4.6) is reserved for the Itô integral, while we will write∫ t

0
σ (s)N (s) ◦ dB (s) (4.7)

for the Stratonovich integral.

Define the process

Y (t) := lnN (t) , and Y0 := lnN0. (4.8)

The case of a deterministic model. Suppose that g (t) = g for all t ≥ 0, where
g is a constant, and also that σ ≡ 0; thus, the population evolves according to the
ordinary differential equation

dN (t) = gN (t) dt, t ≥ 0, and N (0) = N0 > 0,

which can be equivalently rewritten as

dY (t) = gdt, t ≥ 0, and Y (0) = Y0 > 0.

Then,

Y (t) = Y0 + gt,

which implies that

N (t) = N0 exp gt. (4.9)
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Remark 9. The long-term population behaviour is determined by the parameter g
as follows:

(i) if g > 0, then limt→∞N (t) =∞;

(ii) if g = 0, then N (t) = N0 for all t ≥ 0;

(iii) if g < 0, then limt→∞N (t) = 0.

To verify these fact hold true, observe that

lim
t→∞

exp{gt} =


∞ if g > 0,
1 if g = 0,
0 if g > 0

Thus,

lim
t→∞

N (t) = lim
t→∞

N0 exp{gt} =


∞ if g > 0,
N0 if g = 0,
0 if g > 0

The case of the Itô calculus. Suppose that g (t) = g and σ (t) = σ for all
t ≥ 0, where g ∈ R and σ > 0. Thus, the process N (t) , t ≥ 0 satisfies the stochastic
differential equation

dN (t) = gN (t) dt+ σN (t) dB (t) , (4.10)

with N (0) = N0. Then, by the Itô formula (2.21), the process (4.10) satisfies the
equation

dY (t) =

(
g − σ2

2

)
dt+ σdB (t) .

Hence, the Itô calculus yields

Y (t) = Y (0) +

(
g − σ2

2

)
t+ σB (t) ,

which in turn implies that

N (t) = N0 exp
{(

g − σ2

2

)
t+ σB (t)

}
∀t ≥ 0. (4.11)

Now observe that Y (t) is normally distributed with

E [Y (t)] = Y0 +

(
g − σ2

2

)
t and V ar [Y (t)] = σ2t;

hence, N (t) has log-normal distribution with

E [N (t)] = N0 exp
{
gt
}

and V ar [N (t)] = N2
0

[
exp

{
σ2t
}
− 1
]

exp
{

2gt
}
.

The next remark describes the long-term behaviour of the process (4.10).
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Remark 10. (a) if g > σ2

2 , then limt→∞N (t) =∞ a.s.;

(b) if g = σ2

2 , then lim inft→∞N (t) = 0 and lim supt→∞N (t) =∞ a.s.;

(c) if g < σ2

2 , then limt→∞N (t) = 0 a.s.;

The case of Stratonovich calculus. Suppose again that g (t) = a and σ (t) =
σ for all t ≥ 0, but now consider the Stratonovich integral. Then, the process
N (t) , t ≥ 0 satisfies the stochastic differential equation

dN (t) = gN (t) dt+ σN (t) ◦ dB (t) , (4.12)

with N (0) = N0, which can be equivalently rewritten by the definition of the
Stratonovich integral (2.22) as

dN (t) =

(
g +

σ2

2

)
N (t) dt+ σN (t) dB (t) , (4.13)

with the same initial condition. Then, by Itô formula (2.21), the process (4.12)
satisfies the equation

dY (t) = gdt+ σdB (t) .

Hence, the Stratonovich calculus yields

Y (t) = Y (0) + gt+ σB (t) ,

which in turn implies that

N (t) = N0 exp
{
gt+ σB (t)

}
∀t ≥ 0. (4.14)

Now observe that Y (t) is normally distributed with

E [Y (t)] = Y0 + gt and V ar [Y (t)] = σ2t;

hence, N (t) has log-normal distribution with

E [N (t)] = N0 exp
{(

g +
σ2

2

)
t
}

and

V ar [N (t)] = N2
0

[
exp

{
σ2t
}
− 1
]

exp
{(

2g + σ2
)
t
}
.

The next remark describes the long-term behaviour of the process (4.12).

Remark 11. (a) if g > 0, then limt→∞N (t) =∞ a.s.;

(b) if g = 0, then lim inft→∞N (t) = 0 and lim supt→∞N (t) =∞ a.s.;

(c) if g < 0, then limt→∞N (t) = 0 a.s.;



61 The controversy: Itô or Stratonovich?

4.2 The resolution of the controversy: the density-independent
growth rate case

As was discussed above, in both calculi the long-term behaviour of population de-
pends on the growth rate parameter g. We will take a closer look on such parameter.
First, we consider the deterministic model

dN (t) = r (N (t))N (t) dt.

In many cases, the growth rate r (t) can be suitable modelled as a function of
the current size population, that is,

r (t) = R (N (t)) , t ≥ 0,

where the growth rate function R is a function from R+ into R. Then,

R (x) =
1

x

dN (t)

dt
|N(t)=x

=
1

x
lim
h→0

N (t+ h)− x
h

.

Definition 4.1. Consider a stochastic population process N (t) , t ≥ 0.

(a) The arithmetic average growth rate function of N (t) , t ≥ 0, is defined as

Ra (x) =
1

x
lim
h→0

E [N (t+ h) |N (t) = x]− x
h

, x > 0; (4.15)

(b) The geometric average growth rate function is defined as

Rg (x) =
1

x
lim
h→0

exp (E {ln [N (t+ h)] |N (t) = x})− x
h

, x > 0. (4.16)

Proposition 4.2. Suppose that the population evolves according to the Itô stochastic
differential equation

dN (t) = gN (t) dt+ σN (t) dB (t) , N (0) = N0.

Then:

(a) Ra (x) = g for all x > 0;

(b) Rg (x) = g − σ2

2 for all x > 0.

Proof. Firstly note that

N (t+ h) = N0 exp
{(

g − σ2

2

)
(t+ h) + σB (t+ h)

}
= N0 exp

{(
g − σ2

2

)
t+ σB (t)

}
×

exp
{(

g − σ2

2

)
h+ σ [B (t+ h)−B (t)]

}
= N (t) exp

{(
g − σ2

2

)
h+ σ [B (t+ h)−B (t)]

}
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Next, observe that

Ra (x) =
1

x
lim
h→0+

E
[
N (t+ h)

∣∣∣N (t) = x
]
− x

h

=
1

x
lim
h→0+

E
[
N (t) exp

{(
g − σ2

2

)
h+ σ [B (t+ h)−B (t)]

}∣∣∣N (t) = x
]
− x

h

=
1

x
lim
h→0+

x exp
{(

g − σ2

2

)
h
}
E
[
exp

{
σ [B (t+ h)−B (t)]

}∣∣∣N (t) = x
]
− x

h

= lim
h→0+

exp
{(

g − σ2

2

)
h
}
E
[
exp

{
σ [B (t+ h)−B (t)]

}]
− 1

h

= lim
h→0+

exp
{(

g − σ2

2

)
h
}

exp
{
σ2

2
h
}
− 1

h

= lim
h→0+

exp [gh]− 1

h
= g

Now to compute the geometric growth, notice that

ln [N (t+ h)] = Y (t+ h)

= Y (0) +

(
g − σ2

2

)
(t+ h) + σB (t+ h)

= Y (0) +

(
g − σ2

2

)
t+ σB (t) +

(
g − σ2

2

)
h+ σ [B (t+ h)−B (t)]

= Y (t) +

(
g − σ2

2

)
h+ σ [B (t+ h)−B (t)]

= ln [N (t)] +

(
g − σ2

2

)
h+ σ [B (t+ h)−B (t)] .

Thus,

Rg (x) =
1

x
lim
h→0+

exp (E {ln [N (t+ h)] |N (t) = x})− x
h

=
1

x
lim
h→0+

exp
(
E
{

ln [N (t)] +
(
g − σ2

2

)
h+ σ [B (t+ h)−B (t)] |N (t) = x

})
− x

h

=
1

x
lim
h→0+

exp
(

ln (x) +
(
g − σ2

2

)
h+ σE

[
B (t+ h)−B (t)

∣∣∣N (t) = x
])
− x

h

=
1

x
lim
h→0+

x exp
((
g − σ2

2

)
h+ σE [B (t+ h)−B (t)]

)
− x

h

= lim
h→0

exp
((
g − σ2

2

)
h
)
− 1

h

= g − σ2

2
.

Proposition 4.3. Suppose that the population evolves according to the Stratonovich
stochastic differential equation

dN (t) = gN (t) dt+ σN (t) ◦ dB (t) .
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Then:

(a) Ra (x) = g + σ2

2 for all x > 0;

(b) Rg (x) = g for all x > 0.

Proof. By the definition of the Stratonovich integral (2.22), the last SDE is equiva-
lent to the Itô SDE

dN (t) =

(
g +

σ2

2

)
N (t) dt+ σN (t) dB (t) .

and using Proposition 4.2, we have that

Ra (x) = g +
σ2

2

Rg (x) = g +
σ2

2
− σ2

2
= g.

Remark 12. Notice that in both cases, the relation Ra (x) = Rg (x) + σ2

2 holds true.

The computation of both averages present a solution to the controversy. Replac-
ing the unspecified average growth rate g by the specified average growth rate of
each case, we obtain that the solution of the Itô SDE

dN (t) = gN (t) dt+ σN (t) dB (t) .

is

N (t) = N0 exp

{[
Ra −

σ2

2

]
t+ σB (t)

}
= N0 exp {Rgt+ σB (t)}

whereas the solution of the Stratonovich SDE

dN (t) = gN (t) dt+ σN (t) ◦ dB (t) .

is
N (t) = N0 exp {Rgt+ σB (t)}

which implies that both solutions are the same one. Therefore, it is indifferent which
calculus is used to describe the long-term behaviour of the population, whenever one
considers the right average growth rate: arithmetic growth for the Itô calculus and
geometric growth for the Stratonovich calculus.

The long-term behaviour of the process N (t) can be expressed as next:

Remark 13. (a) If Rg (x) > 0, then limt→∞N (t) =∞ a.s.;

(b) if Rg (x) = 0, then lim inft→∞N (t) = 0 and lim supt→∞N (t) =∞ a.s.;

(c) if Rg (x) < 0, then limt→∞N (t) = 0 a.s.;
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4.3 The resolution of the controversy: the density-dependent
growth rate case

In the discussion of the last section, the controversy between both calculi was re-
solved for the density-independent growth rate case. Now, its turn to analyse the
controversy in the density-dependent growth rate case, where gi (x) will denote av-
erage growth rate for the Itô case and gs (x) will denote the average growth rate for
the Stratonovich case.

The Itô case

Consider the Itô stochastic differential equation

dN (t) = gi (N (t))N (t) dt+ σN (t) dB (t) , (4.17)

with initial condition N (0) = N0 > 0 and let Gi (x) := xgi (x) and Σ (x) := σx.
Assume that the following conditions hold:

(A) gi : (0,∞)→ R is a continuously differentiable function and;

(B) the limits gi (0+) := limN→0+ gi (N), Gi (0+) := limN→0+ Gi (N) exists and,
independent of the value of gi (0+), Gi (0+) = 0.

Then, Gi (x) and Σ (x) are continuously differentiable functions and, by Theorem
3.9, there exists a global solution N (t) , t ≥ 0 for the SDE (4.17) until the time-
explosion τ .

If we want to avoid this explosion, N = −∞ and N = ∞ cannot be reached in
finite time. So, let assume further that

(C) the boundaries N = 0 and N = ∞ are unattainable states of the process
N (t) , t ≥ 0.

This assumption implies that process can not reaches any state N < 0 if N0 > 0
and thus, N = −∞ is also an unattainable state. Therefore, there is no explosion
and the solution N (t) , t ≥ 0 of the SDE (4.17) exists for all t ≥ 0 and has values on
(0,∞).

On the other hand, N (t) , t ≥ 0 is not necessary a diffusion process. So, we need
to hold two more conditions relative to the moments of the process N (t) , t ≥ 0 and
the rescaled process Y (t) = ln [N (t)] , t ≥ 0. These assumptions are:

(D) the limits

lim
h→0+

E
[
N (t+ h)− x

∣∣∣N (t) = x
]

h
; lim
h→0+

E
[
|N (t+ h)− x|2

∣∣∣N (t) = x
]

h
(4.18)

exists,
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(E) the limits

lim
h→0+

E
[
ln (N (t+ h))− ln (x)

∣∣∣N (t) = x
]

h
; lim
h→0+

E
[
| ln (N (t+ h))− ln (x) |2

∣∣∣N (t) = x
]

h
(4.19)

exists.

Assumption (D) implies the existence of the arithmetic average growth rate
(4.15). In other way, the Itô formula applied to Y (t) = ln (N (t)) implies that
the SDE (4.17) is changed to

dY (t) =

(
gi

(
eY (t)

)
− σ2

2

)
dt+ σdB (t) , Y (0) = Y0 = ln (N0) . (4.20)

Next, if M is the first limit on assumption (E), let observe that

exp{E
[
ln (N (t+ h))

∣∣∣N (t) = x
]
} = exp{ln (x) +Mh+ o (h)}

= x exp{Mh+ o (h)}
= x (1 +Mh+ o (h)) .

Thus,

Rg (x) =
1

x
lim
h→0

exp{E
[
ln (N (t+ h))

∣∣∣N (t) = x
]
} − x

h

=
1

x
lim
h→0

x (1 +Mh+ o (h))− x
h

= lim
h→0

Mh+ o (h)

h
= M.

By this, assumption (E) implies the existence of the geometric growth rate.
These conditions are resumed in the next theorem, proposed by Braumann in [4].

Theorem 4.4. Let gi (x) be a function that satisfies assumptions (A) and (B) and
let N (t) be the solution of the SDE

dN (t) = N (t) gi (N (t)) dt+ σN (t) dB (t)

If assumption (C) is satisfied, then N (t) exists for all t ≥ 0. Moreover,

• if assumption (D) is satisfied, the arithmetic growth rate exists and

Ra (x) = gi (x) .

• if assumption (E) is satisfied, the geometric growth rate exists and

Rg (x) = gi (x)− σ2

2
.
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Assumptions (A) and (B) sounds so realistic (in particular, (B) not permit spon-
taneous generation). But, what is about the restrictive assumptions (C), (D) and
(E)? Let show more conditions to warranty these assumptions.

(F) There are A ∈ (−∞,∞) and B ∈ (0,∞) such that gi (x) ≤ A for x > B.

(G) If it happens that gi (0+) =∞, then we must have gi (x) ≤ C
(
1 + 1

x2

)
(with C

some positive finite constant) for x ∈ (0, δ) (with δ > 0).

(H) If it happens that gi (0+) = −∞, then we must have gi (x) ≥ D ln (x) (with D
some positive finite constant) for x ∈ (0, δ) (with δ > 0).

With these assumptions, including (A) and (B), we hold the next three lemmas,
that provides the existence and uniqueness of solutions for the SDE (4.17) and (4.20).

Lemma 4.5. Let gi (x) be a function that satisfies assumptions (A) and (B).

(i) If assumptions (F) is satisfied, then there exists a constant K1 > 0 such that,
for all x > 0

x2gi (x) ≤ K1

(
1 + x2

)
. (4.21)

(ii) If assumptions (F) and (G) is satisfied, then there exists a constant K2 > 0
such that, for all x > 0

xgi (x) ≤ K2

(
1 + x2

)
. (4.22)

(iii) If assumptions (F) and (H) are satisfied, then there exists a constant K3 > 0
such that, for all x > 0,

ln (x)

[
gi (x)− σ2

2

]
≤ K3

(
1 + ln (x)2

)
. (4.23)

(iv) If assumptions (F) and (G) are satisfied, then there exists a constant K4 > 0
such that, for all x > 0,

gi (x)− σ2

2
≤ K4

(
1 + ln (x)2

)
. (4.24)

Proof. Proof of (i). By assumption (F), gi (x) ≤ A for x ∈ (B,∞). Then,

x2gi (x) ≤ Ax2 < A
(
1 + x2

)
for all x ∈ (B,∞) .

Next, assumption (B) implies that for a fix ε > 0, there exists δ > 0
such that |xgi (x) | ≤ ε for x < δ. This implies that

x2gi (x) ≤ x|xgi (x) | ≤ εx < ε
(
1 + x2

)
for all x ∈ (0, δ) .

Later, assumption (A) and Weierstrass’ theorem implies that gi (x)
attaches its maximum M on [δ,B]. Thus,

x2gi (x) ≤Mx2 < M
(
1 + x2

)
for all x ∈ [δ,B] .

Finally, if K1 = max{ε,M,A}, then the inequality (4.21) is satisfied
for all x > 0.
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Proof of (ii). By assumption (F), gi (x) ≤ A for x ∈ (B,∞). Then,

xgi (x) ≤ Ax < A
(
1 + x2

)
for all x ∈ (B,∞) .

Next, assumption (B) implies that for a fix ε > 0, there exists δ > 0
such that |xgi (x) | ≤ ε for x < δ. This implies that

xgi (x) ≤ |xgi (x) | ≤ ε < ε
(
1 + x2

)
for all x ∈ (0, δ) .

Later, assumption (A) and Weierstrass’ theorem implies that gi (x)
attaches its maximum M on [δ,B]. Thus,

xgi (x) ≤Mx < 2M
(
1 + x2

)
for all x ∈ [δ,B] .

Finally, if K2 = max{ε, 2M,A}, then the inequality (4.22) is satisfied
for all x > 0.

Proof of (iii). Let B̃ = max{B, exp}. By assumption (F), ln (x) > 1 and gi (x) −
σ2

2 ≤ A−
σ2

2 , with A− σ2

2 > 0 for all x ≥ B̃. Thus,

ln (x)

(
gi (x)− σ2

2

)
≤

(
A− σ2

2

)
ln (x)

≤
(
A− σ2

2

)(
1 + ln (x)2

)
for all x > B̃. By other hand, assumption (B) implies the existence

of the limit W = limx→0+ gi (x)− σ2

2 .

• If W is finite, given η > 0 there exists δ1 < exp−1 such that
|gi (x)− σ2

2 −W | < η if x < δ1. Thus,

∣∣∣ ln (x)

(
gi (x)− σ2

2

) ∣∣∣ ≤ ∣∣∣ ln (x)

(
gi (x)− σ2

2

)
−W ln (x)

∣∣∣
+|W ln (x) |

≤ |η ln (x) |+ |W ln (x) |
= (|W |+ η) | ln (x) |

≤ (|W |+ η)
(

1 + ln (x)2
)
.

• If W =∞, there exists δ2 < exp−1 such that gi (x)− σ2

2 > 0 for

x < δ2. Thus, ln (x)
(
gi (x)− σ2

2

)
< 0 < 1 + ln (x)2.

• If W = −∞, there exists δ3 < exp−1 such that 0 > gi (x)− σ2

2 .
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By assumption (H)

ln (x)

(
gi (x)− σ2

2

)
≤ ln (x)

(
D ln (x)− σ2

2

)
= D ln (x)2 +

σ2

2
| ln (x) |

≤
(
D +

σ2

2

)
ln (x)2

<

(
D +

σ2

2

)(
1 + ln (x)2

)
.

Finally, define δ̃ = min{δ1, δ2, δ3}. Thus, assumption (A) and Weier-

strass’ theorem implies that gi (x)− σ2

2 attaches its maximum M̃ on[
δ̃, B̃

]
. Thus,

ln (x)

(
gi (x)− σ2

2

)
≤ M̃ | ln (x) |

≤ M̃ (1 + | ln (x) |)2

≤ 2M̃
(

1 + ln (x)2
)
.

Therefore, if K3 = max{A − σ2

2 , |W | + η, 1, D + σ2

2 , 2M̃}, then the
inequality (4.23) is satisfied for all x > 0.

Proof of (iv). Let B̃ = max{B, exp}. By assumption (F), gi (x) − σ2

2 ≤ A − σ2

2 ,

with A− σ2

2 > 0 for all x ≥ B̃. Thus,

gi (x)− σ2

2
≤ A− σ2

2
≤
(
A− σ2

2

)(
1 + ln (x)2

)
for all x > B̃.

By other hand, assumption (B) implies the existence of the limit

W = limx→0+ gi (x)− σ2

2 .

• If W is finite, given η > 0 there exists δ1 < exp−1 such that
|gi (x)− σ2

2 −W | < η if x < δ1. Thus,∣∣∣ (gi (x)− σ2

2

) ∣∣∣ ≤ ∣∣∣ (gi (x)− σ2

2

)
−W

∣∣∣+ |W |

≤ (|W |+ η)

≤ (|W |+ η)
(

1 + ln (x)2
)

for all x < δ1.

• If W =∞, there exists δ2 < exp−1 such that gi (x)− σ2

2 > 0 for
x < δ2. Thus, by assumption (G),

gi (x)− σ2

2
< gi (x)

≤ C

(
1 +

1

x2

)
≤ C

(
1 + ln (x)2

)
for all x < δ2.
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• If W = −∞, there exists δ3 < exp−1 such that 0 > gi (x)− σ2

2 .
Thus,

gi (x)− σ2

2
< 0 < 1 + ln (x)2 for all x < δ3.

Finally, define δ̃ = min{δ1, δ2, δ3}. Thus, assumption (A) and Weier-

strass’ theorem implies that gi (x)− σ2

2 attaches its maximum M̃ on[
δ̃, B̃

]
. Thus,

gi (x)− σ2

2
≤ M̃ ≤ M̃

(
1 + ln (x)2

)
for all x ∈

[
δ̃, B̃

]
.

Therefore, if K4 = max{A− σ2

2 , C, |W |+η, 1, M̃}, then the inequality
(4.24) is satisfied for all x > 0.

Lemma 4.6. Let gi (x) be a function that satisfies assumptions (A), (B) and (H).

If W = limx→0+ gi (x)− σ2

2 < 0, then there exists β,D > 0 such that(
D +

σ2

2

)
ln (x) ≤ gi (x)− σ2

2
≤ −β (4.25)

for x ∈ (0, δ) and δ > 0.

Proof. Suppose that W = −∞ and let choose δ < e−1. By assumption (H), gi (x) ≥
D ln (x) for x ∈ (0, δ) with D > 0. Thus,

gi (x)− σ2

2
≥ D ln (x)− σ2

2
≥
(
D +

σ2

2

)
ln (x)

for x ∈ (0, δ). By other hand, for each β > 0 there exists δ1 > 0 such that gi (x) −
σ2

2 ≤ −β if x < δ1. If we choose δ2 = min{δ, δ1}, then for each x ∈ (0, δ2), (4.25) is
satisfied.

In the case that W is finite, there exists α, β > 0 such that −α ≤ gi (x)− σ2

2 ≤ −β
for each x ∈ (0, δ). Moreover, if we choose x ≤ exp

{
− α

D+σ2

2

}
, then

(
D +

σ2

2

)
ln (x) ≤ −α.

Thus, (4.25) is satisfied, as we want to show.
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Theorem 4.7. Let suppose that gi (x) satisfies the assumptions (A), (B), (F), (G)
and (H). Then, there exists a unique solution N (t) , t ≥ 0 for the SDE

dN (t) = gi (N (t))N (t) dt+ σN (t) dB (t)

with initial condition N (0) = N0 > 0. Further that, assumptions (C), (D) and (E)
are satisfied and so, by Theorem 4.4:

• N (t) is a diffusion process on (0,∞),

• the arithmetic average growth rate Ra (x) exists and Ra (x) = gi (x),

• the geometric average growth rate Rg (x) exists and Rg (x) = gi (x)− σ2

2 .

Proof. By the part (i) of Lemma 4.5, the coefficients Gi (x) = xgi (x) and Σ (x) = σx
satisfies the conditions of existence and uniqueness of Theorem 3.4 for the SDE (4.17)
up to an explosion time τ ≤ ∞. Also, by the part (ii) of Lemma 4.5, the hypothesis
of Theorem 3.18 are satisfied and the solution of the SDE (4.17) is a diffusion process
up to the explosion time τ .

Let show that P [τ =∞] = 1, using the Feller test for explosions on Theorem
3.12. As N (t) , t ≥ 0 is a diffusion process, the Feller test if satisfied if we prove that
N = 0 and N =∞ are attracting and unattainable states.

N = ∞ is an attracting state. By assumption (F), gi (x) ≤ A for x > B.
Next, if max{1, B} < x < c < z < y < a <∞,∫ x

a
exp

[
−2

∫ y

c

Gi (z)

Σ2 (z)
dz

]
dy ≤ −

∫ a

x
exp

[
− 2

σ2

∫ y

c

gi (z)

z
dz

]
dy

≤ −
∫ a

x
exp

[
−2A

σ2
ln
(y
c

)]
dy

= −
∫ a

x

(y
c

)− 2A
σ2 dy

= − c
2A
σ2

1− 2A
σ2

(
a1− 2A

σ2 − x1− 2A
σ2

)
So, if we take limits in the last expression, we hold that

lim
a→∞

− c
2A
σ2

1− 2A
σ2

(
a1− 2A

σ2 − x1− 2A
σ2

)
<∞ ⇔ 1− 2A

σ2
< 0

⇔ σ2

2
< A

Therefore, by Proposition 3.22 N =∞ is an attracting state if and only if A > σ2

2 .

N = 0 is an attracting state. As Gi (x)→ 0 as x→ 0+, for each ε > 0 there
exists δ > 0 such that Gi (x) < |Gi (x) | < ε if x < δ. By this, if 0 < a < c < y <
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x < δ < 1,∫ x

a
exp

[
−2

∫ y

c

Gi (z)

Σ2 (z)
dz

]
dy ≤

∫ x

a
exp

[
−2ε

∫ y

c

1

Σ2 (z)
dz

]
dy

≤
∫ x

a
exp

[
2ε

σ2

∫ y

c
dz

]
dy

=

∫ x

a
exp

[
2ε

σ2
(y − c)

]
dy

=
σ2

2ε

[
exp

(
2ε

σ2
(x− c)

)
− exp

(
2ε

σ2
(a− c)

)]
So, if we take limits in the last expression, we hold that

lim
a→0+

∫ x

a

exp

[
−2

∫ y

c

Gi (z)

Σ2 (z)
dz

]
dy ≤ lim

a→0+

σ2

2ε

[
exp

(
2ε

σ2
(x− c)

)
− exp

(
2ε

σ2
(a− c)

)]
=

σ2

2ε
exp

(
− 2ε

σ2
c

)[
exp

(
2ε

σ2
x

)
− 1

]
<∞

Therefore, by Lemma 3.20 N = 0 is an attracting state.

N = ∞ is an unattainable state. By assumption (F), gi (x) ≤ A for x > B,
and choose max{1, B} < c < z < u < y < a <∞. As∫ a

c

S (a)− S (z)

S′ (z) Σ2 (z)
dz =

∫ a

c

(∫ a

z
S′ (y) dy

)
1

S′ (z) Σ2 (z)
dz

=

∫ a

c

(∫ y

c

1

S′ (z) Σ2 (z)
dz

)
S′ (y) dy

=

∫ a

c

(∫ y

c

S′ (y)

S′ (z) Σ2 (z)
dz

)
dy,

and

S′ (y)

S′ (z) Σ2 (z)
=

1

σ2yz
exp

−∫ y

z

2
(
gi (u)− σ2

2

)
σ2u

du


=

1

2y
(
gi (z)− σ2

2

) ∂

∂z
exp

∫ z

y

2
(
gi (u)− σ2

2

)
σ2u

du

 ,
we hold that

lim
a→∞

∫ a

c

S (a)− S (z)

S′ (z) Σ2 (z)
dz = lim

a→∞

∫ a

c

∫ y

c

1

σ2yz
exp

−∫ y

z

2
(
gi (u)− σ2

2

)
σ2u

du

 dz
 dy

≥ 1

σ2
lim
a→∞

∫ a

c

∫ y

c

1

yz
exp

−∫ y

z

2
(
A− σ2

2

)
σ2u

du

 dz
 dy

=
1

σ2
lim
a→∞

∫ a

c

∫ y

c

1

yz
exp

−2
(
A− σ2

2

)
σ2

∫ y

z

du

u

 dz
 dy

=
1

σ2
lim
a→∞

∫ a

c

∫ y

c

1
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exp

−2
(
A− σ2

2

)
σ2

ln
(y
z

) dz
 dy
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lim
a→∞

∫ a

c

S (a)− S (z)

S′ (z) Σ2 (z)
dz =

1

σ2
lim
a→∞

∫ a

c

∫ y

c

1
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(y
z

)− 2

(
A−σ2

2
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σ2 dz

 dy

=
1
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a→∞
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c
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c
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2
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z

2
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2
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2
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− c
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a

) 2

(
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2

)
σ2 − 1

 =∞

if and only is A > σ2

2 . Therefore, N =∞ is an unattainable state.

N = 0 is an unattainable state. Let W = gi (0+)− σ2

2 > 0. In this case, for

each α > 0 there exists δ > 0 such that gi (x)− σ2

2 ≥ −α, for x ∈ (0, δ). Let choose

a, c, u, y, z ∈ (0, δ) such that 0 < a < y < u < z < c < δ. Then, gi (u)− σ2

2 ≥ −α for
u ∈ (y, z) and

lim
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a
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lim
a→0+

∫ a

c

S (a)− S (z)

S′ (z) Σ2 (z)
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a
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σ2 z−
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1
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(
[ln (c)− ln (a)] +

σ2

2α

[(a
c

) 2α
σ2 − 1

])
=∞.

Now, suppose W < 0. By Lemma 4.6, there exists D,β > 0 such that (4.25) is
satisfied for x < δ. Then, choosing a, c, u, y, z ∈ (0, δ) such that 0 < a < y < u <
z < c < δ, we have that

lim
a→0+

∫ c

a

S (a)− S (z)

S′ (z) Σ2 (z)
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σ2u

du

 dz
 dy

=
1

2
(
D + σ2

2

) lim
a→0+

∫ c

a

1

−y ln (y)

1− exp

∫ c

y

2
(
gi (u)− σ2

2

)
σ2u
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1
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1
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1

−y ln (y)
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)− 2β
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because that
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a→0+
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a

1

−y ln (y)

(
c

y

)− 2β

σ2

dy ≤ lim
a→0+

c
−2β

σ2

− ln (c)

∫ c

a
y

2β

σ2
−1dy

=
σ2

−2β ln (c)
lim
a→0+

[
1−

(a
c

) 2β

σ2

]
=

σ2

−2β ln (c)
<∞

and that

lim
a→0+

∫ c

a

1

−y ln (y)
dy = lim

a→0+
ln

(
− ln (a)

− ln (c)

)
=∞. (4.26)

Therefore, N = 0 is an unattainable state, and assumption (C) is satisfied and it
implies, by the Feller test, that P [τ =∞] = 1.
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As N (t) , t ∈ (0,∞) is a diffusion process on (0,∞), then assumption (D) is
satisfied and thus, Ra (x) exists and is equal to gi (x). Now we proceed to show that
assumption (E) is satisfied.

Let consider the process Y (t) , t ∈ (0,∞), with Y (t) = ln (N (t)). By the Itô
formula (2.19), this process is a solution of the SDE (4.20)

dY (t) =

(
gi

(
eY (t)

)
− σ2

2

)
dt+ σdB (t)

with initial condition Y (0) = ln (N0). As gi (x) satisfies (iii) and (iv) of Lemma

4.5, then Ḡi (y) := gi (ey) − σ2

2 and Σ̄ (x) := σ fulfilled the Itô conditions 2; this
implies that the solution exists up to an explosion time τ̄ . As N (t) , t ∈ (0,∞) is
a diffusion process, the Theorem 3.17 implies that Y (t) , t ∈ R is also a diffusion
process. Moreover, as N = 0 and N =∞ are unattainable states, Proposition 3.27
implies that Y = ln (0) = −∞ and Y = ln (∞) = ∞ are unattainable states. This
implies that the explosion time τ̄ for this process is also ∞. Thus, assumption (E)

is also satisfied and so, Rg (x) = gi (x)− σ2

2 .

The Stratonovich case

Let us consider the Stratonovich SDE

dN (t) = gs (N (t))N (t) dt+ σN (t) ◦ dB (t) , (4.27)

with initial condition N (0) = N0 > 0 and let Gs (x) := xgs (x) and Σ (x) := σx. The
previous analysis realized to the Itô SDE (4.17) can be applied to the Stratonovich
SDE (4.27) if we works with its equivalent Itô SDE

dN (t) = gi (N (t))N (t) dt+ σN (t) dB (t) , (4.28)

where gi (x) := gs (x) + σ2

2 .

In order to satisfies assumptions (A-H), we assume that

(A’) gs : (0,∞)→ R is a continuously differentiable function;

(B’) the limits gs (0+) := limN→0+ gs (N), Gs (0+) := limN→0+ Gs (N) exists and,
independent of the value of gs (0+), Gs (0+) = 0.

(C’) N = 0 and N =∞ are unattainable states of the process N (t) , t ≥ 0;

(D’) the limits

lim
h→0+

E
[
N (t+ h)− x

∣∣∣N (t) = x
]

h
; lim
h→0+

E
[
|N (t+ h)− x|2

∣∣∣N (t) = x
]

h
(4.29)

exists;
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(E’) the limits

lim
h→0+

E
[
ln (N (t+ h))− ln (x)

∣∣∣N (t) = x
]

h
; lim
h→0+

E
[
| ln (N (t+ h))− ln (x) |2

∣∣∣N (t) = x
]

h
(4.30)

exists;

(F’) There are A ∈ (−∞,∞) and B ∈ (0,∞) such that gs (x) ≤ A for x > B.

(G’) If it happens that gs (0+) = ∞, then we must have gs (x) ≤ C
(
1 + 1

x2

)
(with

C some positive finite constant) for x ∈ (0, δ) (with δ > 0).

(H’) If it happens that gs (0+) = −∞, then we must have gs (x) ≥ D ln (x) (with D
some positive finite constant) for x ∈ (0, δ) (with δ > 0).

We hold the next observations:

• assumptions (A’), (B’) and (C’) guarantee the existence of solution N (t) , t ≥ 0
for the Stratonovich SDE (4.27);

• (D’) and (E’) provides the existence of the average growth rates;

• if (F’), (G’), (H’) are satisfied, then these implies that (C’), (D’) and (E’) hold
true.

Therefore, we hold the next theorems, for existence and uniqueness of solution
for the Stratonovich SDE (4.27) and the existence of the growth rates.

Theorem 4.8. Let gs (x) be a function that satisfies assumptions (A’) and (B’) and
let N (t) be the solution of the Stratonovich SDE

dN (t) = gs (N (t))N (t) dt+ σN (t) ◦ dB (t)

If assumption (C’) is satisfied, then N (t) exists for all t ≥ 0. Moreover,

• if assumption (D’) is satisfied, the arithmetic growth rate exists and Ra (x) =

gs (x) + σ2

2 .

• if assumption (E’) is satisfied, the geometric growth rate exists and Rg (x) =
gs (x).

Theorem 4.9. Let N (t) be the solution of the Stratonovich SDE

dN (t) = gs (N (t))N (t) dt+ σN (t) ◦ dB (t)

with initial condition N (0) = N0 > 0. If assumptions (A’), (B’), (F’), (G’) and
(H’) are satisfies, then assumptions (C’), (D’) and (E’) are satisfied and so, by
Theorem 4.8:

• N (t) exists for all t ≥ 0 and it is a diffusion process,
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• the arithmetic growth rate Ra (x) exists and Ra (x) = gs (x) + σ2

2 ,

• the geometric growth rate Rg (x) exists and Rg (x) = gs (x).

Comparison between both solution. Let Ni (t) , t ≥ 0 be solution of the
SDE (4.17) and Ns (t) , t ≥ 0 be solution of the SDE (4.27). If Theorems 4.7 and 4.9
are satisfied, the Ni (t) and Ns (t) are diffusion processes, where the drift coefficients
are

Ai (x) = xgi (x) , As (x) = x

(
gs (x) +

σ2

2

)
(4.31)

and both have the same diffusion coefficient B (x) = σ2x2. If we observe that

Ra (x) = gi (x)

for the Itô case and

Ra (x) = gs (x) +
σ2

2

in the Stratonovich case, then the drift coefficient Ai (x) = xRa (x) and As (x) =
xRa (x). Therefore, both solutions are the same diffusion process and thus implies
that Itô SDE (4.17) and Stratonovich SDE (4.27) have exactly the same solution in
terms of their specified average growth rate.

4.4 The resolution of the controversy: the harvesting
case

Let us extend the above analysis to the harvesting case. For that purpose, consider
a per-capita growth rate r (t) with harvesting effort h (t),

r (t) = g (t)− h (t) + σ (t)W (t) . (4.32)

In this per-capita growth rate, let assume that g and h are functions the current
population size g (t) := g (N (t)), h (t) := h (N (t)), that g (N) is a twice continuously

differentiable function with dg(N)
dN < 0 for all N > 0, g (∞) := limN→∞ g (N) < 0

and G (0+) := limN→0Ng (N) = 0 and that h (x) is also a non-negative twice
continuously differentiable function with H (0+) := limN→0Nh (N) = 0. Also,
assume that | σg(x) | is bounded in a right neighborhood of N = 0.

The Itô case

Let denote as gi (x) the average growth rate. Under the above assumptions, the Itô
stochastic differential equation that governs the model is

dN (t) = N (t) [gi (N (t))− h (N (t))] dt+ σN (t) dB (t) , (4.33)

with initial condition N (0) = N0 > 0; this SDE has a global solution N (t) , t ≥ 0
that exists up to an time-explosion τ , given by Theorem 3.2.
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To avoid this phenomena and obtain the existence and uniqueness of the solution
N (t) , t ≥ 0 for this SDE, let define the harvesting rate H (N) such that

H (N) =
h (N)

gi (N)

and further assume that

(I) if H (0+) < 1, then there exists δ, C > 0 such that gi (x)− h (x) ≤ C
(
1 + 1

x2

)
for all x < δ;

(II) if H (0+) > 1, then there exists δ,D > 0 such that gi (x)−h (x) ≥ D ln (x) for
all x < δ.

This dichotomy about H (0+) substituted assumptions (G) and (H) from Section
4.3. The next lemma is analogous to Lemma 4.5.

Lemma 4.10. Assume that gi (x) , h (x) are two continuously differentiable function
as in the above. Then, for all x > 0.

(i) there exists a constant L1 > 0 such that

x2 (gi (x)− h (x)) ≤ L1

(
1 + x2

)
; (4.34)

(ii) there exists a constant L2 > 0 such that

x (gi (x)− h (x)) ≤ L2

(
1 + x2

)
; (4.35)

(iii) if also assumption (II) is satisfied, there exists a constant L3 > 0 such that

ln (x)

(
gi (x)− h (x)− σ2

2

)
≤ L3

(
1 + ln (x)2

)
; (4.36)

(iv) if also assumption (I) is satisfied, there exists a constant L4 > 0 such that

gi (x)− h (x)− σ2

2
≤ L4

(
1 + ln (x)2

)
. (4.37)

The proof of the above lemma is similar to the proof of Lemma 4.5. The principal
difference is the use of H (0+) indeed gi (0+). With this lemma, we justify the
existence and uniqueness of a solution for the SDE (4.33).

Theorem 4.11. Let gi (x) , h (x) be two continuously differentiable functions as
above and that fulfilled assumptions (I) and (II). Then, there exists a unique dif-
fusion process N (t) , t ≥ 0 that is solution of the Itô SDE

dN (t) = N (t) (gi (N (t))− h (N (t))) dt+ σN (t) dB (t) (4.38)

with initial condition N (0) = N0 > 0, and implies that:
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• the states N = 0 and N = ∞ are unattainable, independent of the value of
H (0+),

• the arithmetic growth rate Ra (x) exists and Ra (x) = gi (x)− h (x),

• the geometric growth rate Rg (x) exists and Rg (x) = gi (x)− h (x)− σ2

2 .

Proof. The existence and uniqueness of a solution N (t) , t ≥ 0 for the SDE (4.38) up
to an time-explosion τ is fulfilled by Lemma 4.10 (i). This solution is a diffusion by
Lemma 4.10 and Theorem 3.28. The proof of that the states N = 0 and N =∞ are
unattainable is the same as in Theorem 4.7, using assumptions (I) and (II) indeed
assumptions (G) and (H) of Section 4.3.

Recall Gi (x) = xgi (x) and Σ (x) = σx. If H (0+) > 1, then there exists A1 > 0
such that 1− H (x) ≤ −A for all x in a right neighborhood R1 of N = 0. Then, for
z < x < y < δ,

(1− H (x))Gi (x)

Σ (x)2 ≤ −AGi (x)

Σ (x)2 ⇒ −2
(1− H (x))Gi (x)

Σ (x)2 ≥ 2A
Gi (x)

Σ (x)2

⇒ −2

∫ y

z

(1− H (x))Gi (x)

Σ (x)2 dx ≥ 2A

∫ y

z

Gi (x)

Σ (x)2dx

⇒ 2A

∫ z

y

Gi (x)

Σ (x)2dx ≥ −2

∫ z

y

(1− H (x))Gi (x)

Σ (x)2 dx

This implies that, for 0 < a < z < x < y < b < δ,

exp

[
−2

∫ z

y

(1− H (x))Gi (x)

Σ (x)2
dx

]
≤ exp

[
2A

∫ z

y

Gi (x)

Σ (x)2
dx

]
≤ y

z
exp

[
2A

∫ z

y

Gi (x)

Σ (x)2
dx

]
=

(
Σ (y)

2A

)(
Σ (z)

Gi (z)

)(
2AGi (z)

Σ (z)2

)
exp

[
2A
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y
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]
=

(
Σ (y)

2A

)(
Σ (z)

Gi (z)

)
d

dz
exp

[
2A

∫ z

y

Gi (x)

Σ (x)2
dx

]
≤ CΣ (y)

2A

d

dz
exp

[
2A

∫ z

y

G (x)

Σ (x)2
dx

]
and that∫ b

a
exp

[
−2

∫ z

y

(1− H (x))Gi (x)

Σ (x)2 dx

]
dz ≤ CΣ (y)

2A

∫ b

a

d

dz
exp

[
2A

∫ z

y

Gi (x)
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=
CΣ (y)
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(
exp
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y

Gi (x)
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− exp
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])
.

Taking limits in both sides, it holds that

lim
a→0+

∫ b

a

exp

[
−2

∫ z

y

(1− H (x))Gi (x)

Σ (x)2
dx

]
dz ≤ CΣ (y)

2A

(
exp
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Σ (x)2
dx

]
− lim
a→0+

exp
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a
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dx
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< +∞
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because the integral inside the first exponential is finite and the integral inside the
second one is finite or −∞. This implies that N = 0 is a non-attracting state, and
also, an unattainable state by Theorem 3.24.

In the case that H (0+) < 1, the state N = 0 is attracting, and we omit the proof
because is the same as in Theorem 4.7. In this case, we must show that N = 0 is
unattainable, that is similar part of the proof of Theorem 4.7 for W > 0. In fact,
as H (0+) < 1, there exists δ > 0 such that 1 − H (x) ≥ 0 for all x < δ. Then,
gi (x)− h (x) ≥ 0 for all x < δ, implying that there exists α > 0 such that

gi (x)− h (x)− σ2

2
≥ −α.

Let choose a, c, u, y, z ∈ (0, δ) such that 0 < a < y < u < z < c < δ. Then,

gi (u)− σ2

2 ≥ −α for u ∈ (y, z) and

lim
a→0+
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a
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)
dz

=
1

σ2
lim
a→0+

∫ c

a

(∫ z

a

1

yz

(
z

y

)−2α

σ2

dy

)
dz

=
1

σ2
lim
a→0+

∫ c

a

z
− 2α
σ2
−1

(∫ z

a

y
2α
σ2
−1
dy

)
dz

=
1

2α
lim
a→0+

∫ c

a

z
− 2α
σ2
−1
(
z

2α
σ2 − a

2α
σ2

)
dz

=
1

2α
lim
a→0+

∫ c

a

(
z−1 − a

2α
σ2 z
− 2α
σ2
−1
)
dz

=
1

2α
lim
a→0+

(
[ln (c)− ln (a)] +

σ2

2α

[(a
c

) 2α
σ2 − 1

])
=∞,

as we need to show. With this, N = 0 and N =∞ are unattainable states. Thus, by
the Feller test for explosions, P [τ =∞] = 1. Then, there is no explosion, implying
that the arithmetic average growth rate Ra (x) exists.

The proof of the geometrical average growth rate Rg (x) is the same as in The-
orem 4.7.

The Stratonovich case

By other hand, let consider the Stratonovich differential equation that governs the
model (4.32)

dN (t) = N (t) [gs (N (t))− h (N (t))] dt+ σN (t) ◦ dB (t) , (4.39)
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with initial condition N (0) = N0 > 0 and suppose that gs (x) , h (x) and σ > 0
satisfies the previous hypothesis at the beginning of the section, changing g by gs.
This SDE is equivalent to the Itô SDE

dN (t) = N (t)

[
gi (N (t))− h (N (t)) +

σ2

2

]
dt+ σN (t) dB (t) ,

that has a global solution N (t) , t ≥ 0 that exists up to an time-explosion τ , given
by Theorem 3.2. The assumptions (I) and (II) can be adequate to these ones:

(I’) if H (0+) < 1, then there exists δ, C > 0 such that gs (x)−h (x) ≤ C
(
1 + 1

x2

)
for all x < δ;

(II’) if H (0+) > 1, then there exists δ,D > 0 such that gs (x) − h (x) ≥ D ln (x)
for all x < δ.

With this, we hold the next theorem,

Theorem 4.12. Let gs (x) , h (x) be two continuously differentiable functions as
above and that fulfilled assumptions (I’) and (II’). Then, there exists a unique dif-
fusion process N (t) , t ≥ 0 that is solution of the Itô SDE

dN (t) = N (t) (gs (N (t))− h (N (t))) dt+ σ ◦N (t) dB (t) (4.40)

with initial condition N (0) = N0 > 0, and implies that:

• the states N = 0 and N = ∞ are unattainable, independent of the value of
H (0+),

• the arithmetic growth rate Ra (x) exists and Ra (x) = gs (x)− h (x) + σ2

2 ,

• the geometric growth rate Rg (x) exists and Rg (x) = gs (x)− h (x).

Comparison between both solution. Let Ni (t) , t ≥ 0 be solution of the SDE
(4.38) and Ns (t) , t ≥ 0 be solution of the SDE (4.40). If Theorems 4.11 and 4.12
are satisfied, the Ni (t) and Ns (t) are diffusion processes, where the drift coefficients
are

Ai (x) = xgi (x) , As (x) = x

(
gs (x) +

σ2

2

)
(4.41)

and both have the same diffusion coefficient B (x) = σ2x2. If we observe that

Ra (x) = g (x)

for the Itô case and

Ra (x) = gs (x) +
σ2

2

in the Stratonovich case, then the drift coefficient Ai (x) = xRa (x) and As (x) =
xRa (x). Therefore, both solutions are the same diffusion process and thus implies
that Itô SDE (4.17) and Stratonovich SDE (4.27) have exactly the same solution in
terms of their specified average growth rate.
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